版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆廣東省重點中學(xué)數(shù)學(xué)高一下期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中周期為,且圖象關(guān)于直線對稱的函數(shù)是()A. B.C. D.2.設(shè)是等差數(shù)列的前項和,若,則A. B. C. D.3.已知數(shù)列的前項和為,直線與圓:交于兩點,且.記,其前項和為,若存在,使得有解,則實數(shù)取值范圍是()A. B. C. D.4.直線(是參數(shù))被圓截得的弦長等于()A. B. C. D.5.設(shè)等比數(shù)列的公比,前n項和為,則()A.2 B.4 C. D.6.如圖,為正方體,下面結(jié)論錯誤的是()A.異面直線與所成的角為45° B.平面C.平面平面 D.異面直線與所成的角為45°7.在中,內(nèi)角,,的對邊分別為,,,且=.則A. B. C. D.8.已知,則向量與向量的夾角是()A. B. C. D.9.已知數(shù)列的通項公式是,則等于()A.70 B.28 C.20 D.810.如圖,在平行六面體中,M,N分別是所在棱的中點,則MN與平面的位置關(guān)系是()A.MN平面B.MN與平面相交C.MN平面D.無法確定MN與平面的位置關(guān)系二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在邊長為的菱形中,,為中點,則______.12.若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是______.13.已知,則的最小值為_______.14.過點(2,-3)且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程為_________________.15.已知為銳角,,則________.16.正六棱柱各棱長均為,則一動點從出發(fā)沿表面移動到時的最短路程為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知離心率為的橢圓過點.(1)求橢圓的方程;(2)過點作斜率為直線與橢圓相交于兩點,求的長.18.在正四棱柱中,底面邊長為,側(cè)棱長為.(1)求證:平面平面;(2)求直線與平面所成的角的正弦值;(3)設(shè)為截面內(nèi)-點(不包括邊界),求到面,面,面的距離平方和的最小值.19.已知函數(shù)為奇函數(shù),且,其中,.(1)求,的值.(2)若,,求的值.20.某“雙一流A類”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機抽取了100人進(jìn)行問卷調(diào)查,其中一項是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:(1)為感謝同學(xué)們對這項調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈送一份禮品,并從這6人中再抽取2人,各贈送某款智能手機1部,求獲贈智能手機的2人月薪都不低于1.75萬元的概率;(2)同一組數(shù)據(jù)用該區(qū)間的中點值作代表.(i)求這100人月薪收入的樣本平均數(shù)x和樣本方差s2(ii)該校在某地區(qū)就業(yè)的本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會,并收取一定的活動費用,有兩種收費方案:方案一:設(shè)Ω=[x-s-0.018,x+s+0.018),月薪落在區(qū)間Ω左側(cè)的每人收取400元,月薪落在區(qū)間方案二:按每人一個月薪水的3%收?。挥迷撔>蜆I(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費方案能收到更多的費用?參考數(shù)據(jù):174≈13.221.設(shè)等比數(shù)列的前n項和為.已知,,求和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】因為,所以選項A,B,C,D的周期依次為又當(dāng)時,選項A,B,C,D的值依次為所以只有選項A,B關(guān)于直線對稱,因此選B.考點:三角函數(shù)性質(zhì)2、A【解析】,,選A.3、D【解析】
根據(jù)題意,先求出弦長,再表示出,得到,求出數(shù)列的通項公式,再表示出,用錯位相減求和求出,再求解即可.【詳解】根據(jù)題意,圓的半徑,圓心到直線的距離,所以弦長,所以,當(dāng)時,,所以,時,,所以,得,所以數(shù)列是以為首項,為公比的等比數(shù)列,所以,,,所以,,,所以,由有解,,只需大于的最小值即可,因為,所以,所以.故選:D【點睛】本題主要考查求圓的弦長、由和求數(shù)列通項、錯位相減求數(shù)列的和和解不等式有解的情況,考查學(xué)生的分析轉(zhuǎn)化能力和計算能力,屬于難題.4、D【解析】
先消參數(shù)得直線普通方程,再根據(jù)垂徑定理得弦長.【詳解】直線(是參數(shù)),消去參數(shù)化為普通方程:.圓心到直線的距離,∴直線被圓截得的弦長.故選D.【點睛】本題考查參數(shù)方程化普通方程以及垂徑定理,考查基本分析求解能力,屬基礎(chǔ)題.5、D【解析】
設(shè)首項為,利用等比數(shù)列的求和公式與通項公式求解即可.【詳解】設(shè)首項為,因為等比數(shù)列的公比,所以,故選:D.【點睛】本題主要考查等比數(shù)列的求和公式與通項公式,熟練掌握基本公式是解題的關(guān)鍵,屬于基礎(chǔ)題.6、A【解析】
根據(jù)正方體性質(zhì),依次證明線面平行和面面平行,根據(jù)直線的平行關(guān)系求異面直線的夾角.【詳解】根據(jù)正方體性質(zhì),,所以異面直線與所成的角等于,,,所以不等于45°,所以A選項說法不正確;,四邊形為平行四邊形,,平面,平面,所以平面,所以B選項說法正確;同理可證:平面,是平面內(nèi)兩條相交直線,所以平面平面,所以C選項說法正確;,異面直線與所成的角等于,所以D選項說法正確.故選:A【點睛】此題考查線面平行和面面平行的判定,根據(jù)平行關(guān)系求異面直線的夾角,考查空間線線平行和線面平行關(guān)系的掌握7、C【解析】試題分析:由正弦定理得,,由于,,,故答案為C.考點:正弦定理的應(yīng)用.8、C【解析】試題分析:根據(jù)已知可得:,所以,所以夾角為,故選擇C考點:向量的運算9、C【解析】
因為,所以,所以=20.故選C.10、C【解析】
取的中點,連結(jié),可證明平面平面,由于平面,可知平面.【詳解】取的中點,連結(jié),顯然,因為平面,平面,所以平面,平面,又,故平面平面,又因為平面,所以平面.故選C.【點睛】本題考查了直線與平面的位置關(guān)系,考查了線面平行、面面平行的證明,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
選取為基底,根據(jù)向量的加法減法運算,利用數(shù)量積公式計算即可.【詳解】因為,,,又,.【點睛】本題主要考查了向量的加法減法運算,向量的數(shù)量積,屬于中檔題.12、【解析】
令,可得,從而將問題轉(zhuǎn)化為和的圖象有兩個不同交點,作出圖形,可求出答案.【詳解】由題意,令,則,則和的圖象有兩個不同交點,作出的圖象,如下圖,是過點的直線,當(dāng)直線斜率時,和的圖象有兩個交點.故答案為:.【點睛】本題考查函數(shù)零點問題,考查函數(shù)圖象的應(yīng)用,考查學(xué)生的計算求解能力,屬于中檔題.13、【解析】
運用基本不等式求出結(jié)果.【詳解】因為,所以,,所以,所以最小值為【點睛】本題考查了基本不等式的運用求最小值,需要滿足一正二定三相等.14、【解析】分析:分類討論截距為0和截距不為零兩種情況求解直線方程即可.詳解:當(dāng)截距為0時,直線的方程為,滿足題意;當(dāng)截距不為0時,設(shè)直線的方程為,把點代入直線方程可得,此時直線方程為.故答案為.點睛:求解直線方程時應(yīng)該注意以下問題:一是根據(jù)斜率求傾斜角,要注意傾斜角的范圍;二是求直線方程時,若不能斷定直線是否具有斜率時,應(yīng)對斜率存在與不存在加以討論;三是在用截距式時,應(yīng)先判斷截距是否為0,若不確定,則需分類討論.15、【解析】
利用同角三角函數(shù)的基本關(guān)系求出,并利用二倍角正切公式計算出的值,再利用兩角和的正切公式求出的值.【詳解】為銳角,則,,由二倍角正切公式得,因此,,故答案為.【點睛】本題考查同角三角函數(shù)的基本關(guān)系求值、二倍角正切公式和兩角和的正切公式求值,解題的關(guān)鍵就是靈活利用這些公式進(jìn)行計算,考查運算求解能力,屬于中等題.16、【解析】
根據(jù)可能走的路徑,將所給的正六棱柱展開,利用平面幾何知識求解比較.【詳解】將所給的正六棱柱下圖(2)表面按圖(1)展開.,,,故從A沿正側(cè)面和上表面到D1的路程最短為故答案為:.【點睛】本題主要考查了空間幾何體展形圖的應(yīng)用,還考查了空間想象和運算求解的能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)離心率可得的關(guān)系,將點代入橢圓方程,可得橢圓方程;(2)直線方程與橢圓方程聯(lián)立,可得弦長.【詳解】(1),又,,即橢圓方程是,代入點,可得,橢圓方程是.(2)設(shè)直線方程是,聯(lián)立橢圓方程代入可得.【點睛】本題考查了橢圓方程和直線與橢圓的位置關(guān)系,涉及弦長公式,屬于簡單題.18、(1)證明見解析;(2)(3)【解析】
(1)利用在正方體的幾何性質(zhì),得到,通過線面垂直和面面垂直的判定定理證明.(2)根據(jù)和平面平面,知是在平面上的射影,即為直線與平面所成的角,然后在中求解.(3)如圖所示從向面,面,面引垂線,構(gòu)成一個長方體,設(shè)到面,面,面的距離分別為x,y,z,,即長方體體對角線長的平方,當(dāng)且僅當(dāng)平面時,最小,然后用等體積法求解.【詳解】(1)如圖所示:在正方體中且,所以平面,又因為平面,所以平面平面.(2)因為,由(1)知平面平面,所以是在平面上的射影,所以即為直線與平面所成的角,在中,所以.(3)如圖所示從向面,面,面引垂線,構(gòu)成一個長方體,設(shè)到面,面,面的距離分別為x,y,z,,即長方體體對角線長的平方,當(dāng)且僅當(dāng)平面時,最小,又因為,即,,.【點睛】本題主要考查幾何體中線面垂直,面面垂直的判定定理和線面角及距離問題,還考查了空間想象,抽象概括,推理論證的能力,屬于中檔題.19、(1);(2).【解析】試題分析:(1)先根據(jù)奇函數(shù)性質(zhì)得y2=cos(2x+θ)為奇函數(shù),解得θ=,再根據(jù)解得a(2)根據(jù)條件化簡得sinα=,根據(jù)同角三角函數(shù)關(guān)系得cosα,最后根據(jù)兩角和正弦公式求sin的值試題解析:(1)因為f(x)=(a+2cos2x)cos(2x+θ)是奇函數(shù),而y1=a+2cos2x為偶函數(shù),所以y2=cos(2x+θ)為奇函數(shù),由θ∈(0,π),得θ=,所以f(x)=-sin2x·(a+2cos2x),由f=0得-(a+1)=0,即a=-1.(2)由(1)得f(x)=-sin4x,因為f=-sinα=-,即sinα=,又α∈,從而cosα=-,所以sin=sinαcos+cosαsin=×+×=.20、(1)23;(2)(i)2,0.0174【解析】
(1)根據(jù)頻率分布直方圖求出前2組中的人數(shù),由分層抽樣得抽取的人數(shù),然后把6人編號,可寫出任取2人的所有組合,也可得出獲贈智能手機的2人月薪都不低于1.75萬元的所有組合,從而可計算出概率.(2)根據(jù)頻率分布直方圖計算出均值和方差,然后求出區(qū)間Ω,結(jié)合頻率分布直方圖可計算出兩方案收取的費用.【詳解】(1)第一組有0.2×0.1×100=2人,第二組有1.0×0.1×100=10人.按照分層抽樣抽6人時,第一組抽1人,記為A,第二組抽5人,記為B,C,D,E,F(xiàn).從這6人中抽2人共有15種:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).獲贈智能手機的2人月薪都不低于1.75萬元的10種:(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).于是獲贈智能手機的2人月薪都超過1.75萬元的概率P=10(2)(i)這100人月薪收入的樣本平均數(shù)x和樣本方差s2分別是s2(ii)方案一:s=月薪落在區(qū)間Ω左側(cè)收活動費用約為(0.02+0.10)×400×50÷10000=0.24(萬元);月薪落在區(qū)間Ω收活動費用約為(0.24+0.31+0.20)×600×5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國蜂巢布包頭拖鞋行業(yè)投資前景及策略咨詢研究報告
- 房產(chǎn)購買貸款按揭合同范本2025年
- 2024至2030年中國草本軟膜粉行業(yè)投資前景及策略咨詢研究報告
- 2024年度電子元器件貼牌代生產(chǎn)合同3篇
- 2025生活用品訂購合同范本
- 2024至2030年中國環(huán)形燈管行業(yè)投資前景及策略咨詢研究報告
- 辦公場地租賃合同標(biāo)準(zhǔn)2025年
- 2024年度健身器材代銷合作合同范本3篇
- 2025擔(dān)保合同范文
- 2024至2030年紅紫蘇葉油項目投資價值分析報告
- DL∕T 802.2-2017 電力電纜用導(dǎo)管 第2部分:玻璃纖維增強塑料電纜導(dǎo)管
- 全國計算機等級考試二級Python復(fù)習(xí)備考題庫(含答案)
- 《生物安全培訓(xùn)》課件-2024鮮版
- 更換電梯協(xié)議書范本
- 湖北省仙桃市2023-2024學(xué)年七年級下學(xué)期期末地理試題(無答案)
- JTG-D40-2011公路水泥混凝土路面設(shè)計規(guī)范
- 測繪公司工作個人年度總結(jié)
- MOOC 普通植物病理學(xué)-西北農(nóng)林科技大學(xué) 中國大學(xué)慕課答案
- 【新收入準(zhǔn)則對建筑企業(yè)會計核算的影響:以J公司為例14000字(論文)】
- icu護(hù)士年終工作總結(jié)
- 四川省宜賓市2023-2024學(xué)年高一上學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測數(shù)學(xué)試卷(解析版)
評論
0/150
提交評論