2025屆安徽省合肥市金湯白泥樂槐六校數(shù)學(xué)高一下期末監(jiān)測(cè)模擬試題含解析_第1頁(yè)
2025屆安徽省合肥市金湯白泥樂槐六校數(shù)學(xué)高一下期末監(jiān)測(cè)模擬試題含解析_第2頁(yè)
2025屆安徽省合肥市金湯白泥樂槐六校數(shù)學(xué)高一下期末監(jiān)測(cè)模擬試題含解析_第3頁(yè)
2025屆安徽省合肥市金湯白泥樂槐六校數(shù)學(xué)高一下期末監(jiān)測(cè)模擬試題含解析_第4頁(yè)
2025屆安徽省合肥市金湯白泥樂槐六校數(shù)學(xué)高一下期末監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆安徽省合肥市金湯白泥樂槐六校數(shù)學(xué)高一下期末監(jiān)測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.2.對(duì)于空間中的兩條直線,和一個(gè)平面,下列結(jié)論正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.()A.4 B. C.1 D.24.若是等差數(shù)列,首項(xiàng),,,則使前n項(xiàng)和成立的最大正整數(shù)n=()A.2017 B.2018 C.4035 D.40345.己知,,若軸上方的點(diǎn)滿足對(duì)任意,恒有成立,則點(diǎn)縱坐標(biāo)的最小值為()A. B. C.1 D.26.已知,則下列不等式中成立的是()A. B. C. D.7.如圖,點(diǎn)為正方形的中心,為正三角形,平面平面是線段的中點(diǎn),則()A.,且直線是相交直線B.,且直線是相交直線C.,且直線是異面直線D.,且直線是異面直線8.已知兩個(gè)非零向量,滿足,則()A. B.C. D.9.某工廠利用隨機(jī)數(shù)表對(duì)生產(chǎn)的600個(gè)零件進(jìn)行抽樣測(cè)試,先將600個(gè)零件進(jìn)行編號(hào),編號(hào)分別為001,002,…,599,600從中抽取60個(gè)樣本,如下提供隨機(jī)數(shù)表的第4行到第6行:322118342978645407325242064438122343567735789056428442125331345786073625300732862345788907236896080432567808436789535577348994837522535578324577892345若從表中第6行第6列開始向右依次讀取3個(gè)數(shù)據(jù),則得到的第6個(gè)樣本編號(hào)為()A.522 B.324 C.535 D.57810.若,且,恒成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知中,的對(duì)邊分別為,若,則的周長(zhǎng)的取值范圍是__________.12.已知正實(shí)數(shù)x,y滿足2x+y=2,則xy的最大值為______.13.若、分別是方程的兩個(gè)根,則______.14.如果數(shù)據(jù)的平均數(shù)是,則的平均數(shù)是________.15.執(zhí)行右邊的程序框圖,若輸入的是,則輸出的值是.16.如圖,在直四棱柱中,,,,分別為的中點(diǎn),平面平面.給出以下幾個(gè)說法:①;②直線與的夾角為;③與平面所成的角為;④平面內(nèi)存在直線與平行.其中正確命題的序號(hào)是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,在平面四邊形ABCD中,AD=1,CD=2,AC=.(1)求cos∠CAD的值;(2)若cos∠BAD=-,sin∠CBA=,求BC的長(zhǎng).18.已知數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.19.已知數(shù)列滿足且,設(shè),.(1)求;(2)求的通項(xiàng)公式;(3)求.20.已知?jiǎng)狱c(diǎn)P與兩個(gè)定點(diǎn)O(0,0),A(3,0)的距離的比值為2,點(diǎn)P的軌跡為曲線C.(1)求曲線C的軌跡方程(2)過點(diǎn)(﹣1,0)作直線與曲線C交于A,B兩點(diǎn),設(shè)點(diǎn)M坐標(biāo)為(4,0),求△ABM面積的最大值.21.已知,,函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)當(dāng)時(shí),求函數(shù)的值域.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

由題意利用兩角和的余弦公式化簡(jiǎn)函數(shù)的解析式,再利用余弦函數(shù)的單調(diào)性,得出結(jié)論.【詳解】函數(shù),令,求得,可得函數(shù)的增區(qū)間為,,.再根據(jù),,可得增區(qū)間為,,故選.【點(diǎn)睛】本題主要考查兩角和的余弦公式的應(yīng)用,考查余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.2、C【解析】

依次分析每個(gè)選項(xiàng)中兩條直線與平面的位置關(guān)系,確定兩條直線的位置關(guān)系即可.【詳解】平行于同一平面的兩條直線不一定相互平行,故選項(xiàng)A錯(cuò)誤,平行于平面的直線不一定與該平面內(nèi)的直線平行,故選項(xiàng)B錯(cuò)誤,垂直于平面的直線,垂直于與該平面平行的所有線,故選項(xiàng)C正確,垂直于同一平面的兩條直線相互平行,故選項(xiàng)D錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查了直線與平面位置關(guān)系的辨析,屬于基礎(chǔ)題.3、A【解析】

分別利用和差公式計(jì)算,相加得答案.【詳解】故答案為A【點(diǎn)睛】本題考查了正切的和差公式,意在考查學(xué)生的計(jì)算能力.4、D【解析】

由等差數(shù)列的性質(zhì)可得,,由等差數(shù)列前項(xiàng)和公式可得則,,得解.【詳解】解:由是等差數(shù)列,又,所以,又首項(xiàng),,則,,則,,即使前n項(xiàng)和成立的最大正整數(shù),故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),重點(diǎn)考查了等差數(shù)列前項(xiàng)和公式,屬中檔題.5、D【解析】

由題意首先利用平面向量的坐標(biāo)運(yùn)算法則確定縱坐標(biāo)的解析式,然后結(jié)合二次函數(shù)的性質(zhì)確定點(diǎn)P縱坐標(biāo)的最小值即可.【詳解】設(shè),則,,故,恒成立,即恒成立,據(jù)此可得:,故,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.據(jù)此可得的最小值為,則的最小值為.即點(diǎn)縱坐標(biāo)的最小值為2.故選D.【點(diǎn)睛】本題主要考查平面向量的坐標(biāo)運(yùn)算,二次函數(shù)最值的求解等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.6、D【解析】

由,,計(jì)算可判斷;由,,計(jì)算可判斷;由,可判斷;作差可判斷.【詳解】解:,當(dāng),時(shí),可得,故錯(cuò)誤;當(dāng),時(shí),,故錯(cuò)誤;當(dāng),,故錯(cuò)誤;,即,故正確.故選:.【點(diǎn)睛】本題考查不等式的性質(zhì),考查特殊值的運(yùn)用,以及運(yùn)算能力,屬于基礎(chǔ)題.7、B【解析】

利用垂直關(guān)系,再結(jié)合勾股定理進(jìn)而解決問題.【詳解】如圖所示,作于,連接,過作于.連,平面平面.平面,平面,平面,與均為直角三角形.設(shè)正方形邊長(zhǎng)為2,易知,.,故選B.【點(diǎn)睛】本題考查空間想象能力和計(jì)算能力,解答本題的關(guān)鍵是構(gòu)造直角三角性.8、C【解析】

根據(jù)向量的模的計(jì)算公式,由逐步轉(zhuǎn)化為,即可得到本題答案.【詳解】由題,得,即,,則,所以.故選:C.【點(diǎn)睛】本題主要考查平面向量垂直的等價(jià)條件以及向量的模,化簡(jiǎn)變形是關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.9、D【解析】

根據(jù)隨機(jī)抽樣的定義進(jìn)行判斷即可.【詳解】第行第列開始的數(shù)為(不合適),,(不合適),,,,(不合適),(不合適),,(重復(fù)不合適),則滿足條件的6個(gè)編號(hào)為,,,,,則第6個(gè)編號(hào)為本題正確選項(xiàng):【點(diǎn)睛】本題主要考查隨機(jī)抽樣的應(yīng)用,根據(jù)定義選擇滿足條件的數(shù)據(jù)是解決本題的關(guān)鍵.10、A【解析】

將代數(shù)式與相乘,展開式利用基本不等式求出的最小值,將問題轉(zhuǎn)化為解不等式,解出即可.【詳解】由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,所以,的最小值為.由題意可得,即,解得.因此,實(shí)數(shù)的取值范圍是,故選A.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,考查不等式恒成立問題以及一元二次不等式的解法,對(duì)于不等式恒成立問題,常轉(zhuǎn)化為最值來處理,考查計(jì)算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】中,由余弦定理可得,∵,∴,化簡(jiǎn)可得.∵,∴,解得(當(dāng)且僅當(dāng)時(shí),取等號(hào)).故.再由任意兩邊之和大于第三邊可得,故有,故的周長(zhǎng)的取值范圍是,故答案為.點(diǎn)睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意兩邊之和大于第三邊求得,由此求得△ABC的周長(zhǎng)的取值范圍.12、【解析】

由基本不等式可得,可求出xy的最大值.【詳解】因?yàn)?,所以,故,?dāng)且僅當(dāng)時(shí),取等號(hào).故答案為.【點(diǎn)睛】利用基本不等式求最值必須具備三個(gè)條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號(hào)取得的條件.13、【解析】

利用韋達(dá)定理可求出和的值,然后利用兩角和的正切公式可計(jì)算出的值.【詳解】由韋達(dá)定理得,,因此,.故答案為:.【點(diǎn)睛】本題考查利用兩角和的正切公式求值,同時(shí)也考查了一元二次方程根與系數(shù)的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.14、5【解析】

根據(jù)平均數(shù)的定義計(jì)算.【詳解】由題意,故答案為:5.【點(diǎn)睛】本題考查求新數(shù)據(jù)的均值.掌握均值定義是解題關(guān)鍵.實(shí)際上如果數(shù)據(jù)的平均數(shù)是,則新數(shù)據(jù)的平均數(shù)是.15、24【解析】

試題分析:根據(jù)框圖的循環(huán)結(jié)構(gòu),依次;;;.跳出循環(huán)輸出.考點(diǎn):算法程序框圖.16、①③.【解析】

利用線面平行的性質(zhì)定理可判斷①;利用平行線的性質(zhì)可得直線與的夾角等于直線與所成的角,在中即可判斷②;與平面所成的角即為與平面所成的角可判斷③;根據(jù)直線與平面的位置關(guān)系可判斷④;【詳解】對(duì)于①,由,平面平面,則,又,所以,故①正確;對(duì)于②,連接,由,即直線與的夾角等于直線與所成的角,在中,,顯然直線與的夾角不為,故②不正確;對(duì)于③,與平面所成的角即為與平面所成的角,根據(jù)三棱柱為直棱柱可知為與平面所成的角,在梯形中,,,,可解得與平面所成的角為,故③正確;對(duì)于④,由于與平面相交,故平面內(nèi)不存在與平行的直線.故答案為:①③【點(diǎn)睛】本題是一道立體幾何題目,考查了線面平行的性質(zhì)定理,求線面角以及直線與平面之間的位置關(guān)系,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】試題分析:(1)利用題意結(jié)合余弦定理可得;(2)利用題意結(jié)合正弦定理可得:.試題解析:(I)在中,由余弦定理得(II)設(shè)在中,由正弦定理,故點(diǎn)睛:在解決三角形問題中,面積公式S=absinC=bcsinA=acsinB最常用,因?yàn)楣街屑扔羞呌钟薪?,容易和正弦定理、余弦定理?lián)系起來.18、(1);(2)【解析】

(1)按等比數(shù)列的概念直接求解即可;(2)先求出的表達(dá)式,再利用裂項(xiàng)相消法即可求得數(shù)列的前項(xiàng)和.【詳解】(1)由等比數(shù)列通項(xiàng)公式得:(2)由(1)可得:【點(diǎn)睛】本題主要考查數(shù)列的通項(xiàng)公式問題及利用裂項(xiàng)相消法求和的問題,屬常規(guī)考題.19、(1),,,;(1),;(3).【解析】

(1)依次代入計(jì)算,可求得;(1)歸納出,并用數(shù)學(xué)歸納法證明;(3)用裂項(xiàng)相消法求和,然后求極限.【詳解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)歸納:,下面用數(shù)學(xué)歸納法證明:1°n=1,n=1時(shí),由(1)知成立,1°假設(shè)n=k(k>1)時(shí),結(jié)論成立,即bk=1k1,則n=k+1時(shí),ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1時(shí)結(jié)論成立,∴對(duì)所有正整數(shù)n,bn=1n1.(3)由(1)知n1時(shí),,∴,.【點(diǎn)睛】本題考查用歸納法求數(shù)列的通項(xiàng)公式,考查用裂項(xiàng)相消法求數(shù)列的和,考查數(shù)列的極限.在求數(shù)列通項(xiàng)公式時(shí),可以根據(jù)已知的遞推關(guān)系求出數(shù)列的前幾項(xiàng),然后歸納出通項(xiàng)公式,并用數(shù)學(xué)歸納法證明,這對(duì)學(xué)生的歸納推理能力有一定的要求,這也就是我們平常所學(xué)的從特殊到一般的推理方法.20、(1);(2)2【解析】

(1)設(shè)點(diǎn),運(yùn)用兩點(diǎn)的距離公式,化簡(jiǎn)整理可得所求軌跡方程;(2)由題意可知,直線的斜率存在,設(shè)直線方程為,求得到直線的距離,以及弦長(zhǎng)公式,和三角形的面積公式,運(yùn)用換元法和二次函數(shù)的最值可得所求.【詳解】(1)設(shè)點(diǎn),,即,,即,曲線的方程為.(2)由題意可知,直線的斜率存在,設(shè)直線方程為,由(1)可知,點(diǎn)是圓的圓心,點(diǎn)到直線的距離為,由得,即,又,所以,令,所以,,則,所以,當(dāng),即,此時(shí),符合題意,即時(shí)取等號(hào),所以面積的最大值為.【點(diǎn)睛】本題主要考查了軌跡方程的求法,直線和圓的位置關(guān)系,以及弦長(zhǎng)公式和點(diǎn)到直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論