版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖南省常德市示范初中高一下數(shù)學期末復習檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.計算:A. B. C. D.2.若,且,則xy的最大值為()A. B. C. D.3.若經(jīng)過兩點、的直線的傾斜角為,則等于()A. B. C. D.4.下列函數(shù)中,最小正周期為且圖象關于原點對稱的函數(shù)是()A. B.C. D.5.已知函數(shù)相鄰兩個零點之間的距離為,將的圖象向右平移個單位長度,所得的函數(shù)圖象關于軸對稱,則的一個值可能是()A. B. C. D.6.函數(shù)y=2cosx-1A.2,-2 B.1,-3 C.1,-1 D.2,-17.設向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件8.已知,且,,則()A. B. C. D.9.關于的不等式對一切實數(shù)都成立,則的取值范圍是()A. B. C. D.10.已知直線和互相平行,則它們之間的距離是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.無限循環(huán)小數(shù)化成最簡分數(shù)為________12.已知,,則______,______.13.函數(shù)的部分圖象如圖所示,則函數(shù)的解析式為______.14.已知均為正數(shù),則的最大值為______________.15.已知向量,,若與的夾角是銳角,則實數(shù)的取值范圍為______.16.已知無窮等比數(shù)列的首項為,公比為q,且,則首項的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,且,記數(shù)列的前項和為,數(shù)列的前項和為.(1)若,求序數(shù)的值;(2)若數(shù)列的公差,求數(shù)列的公比及.18.已知集合.(Ⅰ)求;(Ⅱ)若集合,寫出集合的所有子集.19.已知函數(shù)的圖象過點.(1)求的值;(2)判斷的奇偶性并證明.20.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調遞增區(qū)間.21.已知數(shù)列滿足,.(1)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)正弦余弦的二倍角公式化簡求解.【詳解】,故選A.【點睛】本題考查三角函數(shù)的恒等變化,關鍵在于尋找題目與公式的聯(lián)系.2、D【解析】
利用基本不等式可直接求得結果.【詳解】(當且僅當時取等號)的最大值為故選:【點睛】本題考查利用基本不等式求解積的最大值的問題,屬于基礎題.3、D【解析】
由直線的傾斜角得知直線的斜率為,再利用斜率公式可求出的值.【詳解】由于直線的傾斜角為,則該直線的斜率為,由斜率公式得,解得,故選D.【點睛】本題考查利用斜率公式求參數(shù),同時也涉及了直線的傾斜角與斜率之間的關系,考查計算能力,屬于基礎題.4、A【解析】
求出函數(shù)的周期,函數(shù)的奇偶性,判斷求解即可.【詳解】解:y=cos(2x)=﹣sin2x,是奇函數(shù),函數(shù)的周期為:π,滿足題意,所以A正確y=sin(2x)=cos2x,函數(shù)是偶函數(shù),周期為:π,不滿足題意,所以B不正確;y=sin2x+cos2xsin(2x),函數(shù)是非奇非偶函數(shù),周期為π,所以C不正確;y=sinx+cosxsin(x),函數(shù)是非奇非偶函數(shù),周期為2π,所以D不正確;故選A.考點:三角函數(shù)的性質.5、D【解析】
先求周期,從而求得,再由圖象變換求得.【詳解】函數(shù)相鄰兩個零點之間的距離為,則周期為,∴,,圖象向右平移個單位得,此函數(shù)圖象關于軸對稱,即為偶函數(shù),∴,,.時,.故選D.【點睛】本題考查函數(shù)的圖象與性質.考查圖象平衡變換.在由圖象確定函數(shù)解析式時,可由最大值和最小值確定,由“五點法”確定周期,從而確定,再由特殊值確定.6、B【解析】
根據(jù)余弦函數(shù)有界性確定最值.【詳解】因為-1≤cosx≤1,所以【點睛】本題考查余弦函數(shù)有界性以及函數(shù)最值,考查基本求解能力,屬基本題.7、C【解析】
利用向量共線的性質求得,由充分條件與必要條件的定義可得結論.【詳解】因為向量,,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【點睛】本題主要考查向量共線的性質、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.8、C【解析】
根據(jù)同角公式求出,后,根據(jù)兩角和的正弦公式可得.【詳解】因為,所以,因為,所以.因為,所以,因為,所以.所以.故選:C【點睛】本題考查了同角公式,考查了兩角和的正弦公式,拆解是解題關鍵,屬于中檔題.9、D【解析】
特值,利用排除法求解即可.【詳解】因為當時,滿足題意,所以可排除選項B、C、A,故選D【點睛】不等式恒成立問題有兩個思路:求最值,說明恒成立參變分離,再求最值。10、D【解析】
由已知中直線和互相平行,求出的值,再根據(jù)兩條平行線間的距離公式求得它們之間的距離.【詳解】∵直線和互相平行,則,將直線的方程化為,則兩條平行直線之間的距離,===.故選:D.【點睛】本題主要考查兩條直線平行的性質,兩條平行線間的距離公式的應用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用無窮等比數(shù)列求和的方法即可.【詳解】.故答案為:【點睛】本題主要考查了無窮等比數(shù)列的求和問題,屬于基礎題型.12、【解析】
由的值,可求出的值,再判斷角的范圍,可判斷出,進而將平方,可求出答案.【詳解】由題意,,因為,所以,即;又因為,所以,即,而,由于,可知,所以,則,即.故答案為:;.【點睛】本題考查同角三角函數(shù)基本關系的應用,考查二倍角公式的應用,考查學生的計算求解能力,屬于中檔題.13、【解析】
根據(jù)三角函數(shù)圖象依次求得的值.【詳解】由圖象可知,,所以,故,將點代入上式得,因為,所以.故.故答案為:【點睛】本小題主要考查根據(jù)三角函數(shù)的圖象求三角函數(shù)的解析式,屬于基礎題.14、【解析】
根據(jù)分子和分母的特點把變形為,運用重要不等式,可以求出的最大值.【詳解】(當且僅當且時取等號),(當且僅當且時取等號),因此的最大值為.【點睛】本題考查了重要不等式,把變形為是解題的關鍵.15、【解析】
先求出與的坐標,再根據(jù)與夾角是銳角,則它們的數(shù)量積為正值,且它們不共線,求出實數(shù)的取值范圍,.【詳解】向量,,,,若與的夾角是銳角,則與不共線,且它們乘積為正值,即,且,求得,且.【點睛】本題主要考查利用向量的數(shù)量積解決向量夾角有關的問題,以及數(shù)量積的坐標表示,向量平行的條件等.條件的等價轉化是解題的關鍵.16、【解析】
根據(jù)極限存在得出,對分、和三種情況討論得出與之間的關系,可得出的取值范圍.【詳解】由于,則.①當時,則,;②當時,則,;③當時,,解得.綜上所述:首項的取值范圍是,故答案為:.【點睛】本題考查極限的應用,要結合極限的定義得出公比的取值范圍,同時要對公比的取值范圍進行分類討論,考查分類討論思想的應用,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】
(1)先設等差數(shù)列的公差為,根據(jù)題中條件,求出公差,再由通項公式,得到,即可求出結果;(2)先由題意求出,得到等比數(shù)列的公比,再由等比數(shù)列的求和公式,即可得出結果.【詳解】(1)設等差數(shù)列的公差為,因為,,所以,解得:;又,所以,即,解得:;(2)因為數(shù)列的公差,,所以;因此等比數(shù)列的公比為,所以其前項和為.【點睛】本題主要考查等差數(shù)列與等比數(shù)列的綜合,熟記通項公式與求和公式即可,屬于??碱}型.18、(Ⅰ)(Ⅱ).【解析】
(Ⅰ)求解二次不等式從而求得集合A,利用指數(shù)函數(shù)的圖像求出集合B,再進行并集運算即可;(Ⅱ)依次求出,,即可寫出集合C的子集.【詳解】(Ⅰ)由,得,即有,于是.作出函數(shù)的圖象可知,于是,所以,(Ⅱ),,集合的所有子集是:.【點睛】本題考查集合的基本運算,集合的子集,屬于基礎題.19、(1),(2)奇函數(shù),證明見解析【解析】
(1)將代入解析式,解方程即可.【詳解】(1)由題知:,解得.(2).,定義域為:.,.所以,所以為奇函數(shù).【點睛】本題第一問考查對數(shù)的運算,第二問考查函數(shù)奇偶的判斷,屬于中檔題.20、(1)(2)【解析】
(1)通過降次公式和輔助角公式化簡函數(shù)得到,再根據(jù)周期公式得到答案.(2)根據(jù)(1)中函數(shù)表達式,直接利用單調區(qū)間公式得到答案.【詳解】(1)由題意得.可得:函數(shù)的最小正周期(2)由,得,所以函數(shù)的單調遞增區(qū)間為.【點睛】本題考查三角函數(shù)的最小正周期,函數(shù)的單調區(qū)間,將函數(shù)化簡為標準形式是解題的關鍵,意在考查學生對于三角函數(shù)性質的應用和計算能力.21、(1);(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度專業(yè)牧場代牧服務標準合同4篇
- 2025年度臨時停車場帳篷搭建施工合同范本3篇
- 2024物流包裝與裝卸合同
- 2025年度智慧家居產(chǎn)品研發(fā)承包經(jīng)營合同書范文4篇
- 2025年度桉樹種植與生物質能利用技術研發(fā)合同3篇
- 2025年個人汽車抵押貸款抵押權設立及轉讓合同4篇
- 2025年度住宅小區(qū)地下車庫車位使用權購買合同范本4篇
- 2025年度文化產(chǎn)業(yè)園開發(fā)承包合同股東內部合作協(xié)議4篇
- 2024年甲乙雙方石材供需合同
- 2025年度新能源項目地質鉆孔工程承包協(xié)議4篇
- 中國大百科全書(第二版全32冊)08
- 初中古詩文言文背誦內容
- 天然氣分子篩脫水裝置吸附計算書
- 檔案管理項目 投標方案(技術方案)
- 蘇教版六年級上冊100道口算題(全冊完整版)
- 2024年大學試題(宗教學)-佛教文化筆試考試歷年典型考題及考點含含答案
- 計算機輔助設計智慧樹知到期末考試答案章節(jié)答案2024年青島城市學院
- 知識庫管理規(guī)范大全
- 電腦耗材實施方案、供貨方案、售后服務方案
- 環(huán)衛(wèi)項目年終工作總結
- 弘揚教育家精神爭做四有好老師心得10篇
評論
0/150
提交評論