版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆安徽省蚌埠市田家炳中學、五中高一下數(shù)學期末復習檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.中,分別是內(nèi)角的對邊,且,,則等于()A. B. C. D.2.在中,已知角的對邊分別為,若,,,,且,則的最小角的正切值為()A. B. C. D.3.在數(shù)列{an}中,若a1,且對任意的n∈N*有,則數(shù)列{an}前10項的和為()A. B. C. D.4.已知角滿足,,且,,則的值為()A. B. C. D.5.已知全集,集合,,則()A. B.C. D.6.圓關(guān)于直線對稱的圓的方程為()A. B.C. D.7.設滿足約束條件則的最大值為().A.10 B.8 C.3 D.28.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.9.在平行四邊形ABCD中,,,E是CD的中點,則()A.2 B.-3 C.4 D.610.如果全集,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則________12.不等式的解集為_________.13.如圖,正方形中,分別為邊上點,且,,則________.14.已知等差數(shù)列的公差為2,若成等比數(shù)列,則________.15.如圖甲是第七屆國際數(shù)學教育大會(簡稱)的會徽圖案,會徽的主體圖案是由如圖乙的一連串直角三角形演化而成的,其中,如果把圖乙中的直角三角形繼續(xù)作下去,記的長度構(gòu)成數(shù)列,則此數(shù)列的通項公式為_____.16.若正四棱錐的所有棱長都相等,則該棱錐的側(cè)棱與底面所成的角的大小為____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.△ABC中,a=7,c=3,且=.(1)求b;(2)求∠A.18.在物理中,簡諧運動中單擺對平衡位置的位移與時間的關(guān)系,交流電與時間的關(guān)系都是形如的函數(shù).已知電流(單位:)隨時間(單位:)變化的函數(shù)關(guān)系是:,(1)求電流變化的周期、頻率、振幅及其初相;(2)當,,,,(單位:)時,求電流.19.已知.(I)若函數(shù)有三個零點,求實數(shù)的值;(II)若對任意,均有恒成立,求實數(shù)的取值范圍.20.已知,是第四象限角,求和的值.21.已知集合,集合.(1)求;(2)若不等式的解集為,求不等式的解集.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:由已知得,解得(舍)或,又因為,所以,由正弦定理得.考點:1、倍角公式;2、正弦定理.2、D【解析】
根據(jù)大角對大邊判斷最小角為,利用正弦定理得到,代入余弦定理計算得到,最后得到.【詳解】根據(jù)大角對大邊判斷最小角為根據(jù)正弦定理知:根據(jù)余弦定理:化簡得:故答案選D【點睛】本題考查了正弦定理,余弦定理,意在考查學生的計算能力.3、A【解析】
用累乘法可得.利用錯位相減法可得S,即可求解S10=22.【詳解】∵,則.∴,.Sn,.∴,∴S,則S10=22.故選:A.【點評】本題考查了累乘法求通項,考查了錯位相減法求和,意在考查計算能力,屬于中檔題.4、D【解析】
根據(jù)角度范圍先計算和,再通過展開得到答案.【詳解】,,故答案選D【點睛】本題考查了三角函數(shù)恒等變換,將是解題的關(guān)鍵.5、A【解析】
本題根據(jù)交集、補集的定義可得.容易題,注重了基礎知識、基本計算能力的考查.【詳解】,則【點睛】易于理解集補集的概念、交集概念有誤.6、B【解析】
設圓心關(guān)于直線對稱的圓的圓心為,則由,求出的值,可得對稱圓的方程.【詳解】圓的圓心為,半徑,則不妨設圓關(guān)于直線對稱的圓的圓心為,半徑為,則由,解得,故所求圓的方程為.故選:B【點睛】本題考查了圓的標準方程、中點坐標公式,需熟記圓的標準形式,屬于基礎題.7、B【解析】
作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)即可求解.【詳解】作出可行域如圖:化目標函數(shù)為,聯(lián)立,解得.由圖象可知,當直線過點A時,直線在y軸上截距最小,有最大值.【點睛】本題主要考查了簡單的線性規(guī)劃,數(shù)形結(jié)合的思想,屬于中檔題.8、A【解析】
觀察可知,這個幾何體由兩部分構(gòu)成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積?!驹斀狻吭O半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。9、A【解析】
由平面向量的線性運算可得,再結(jié)合向量的數(shù)量積運算即可得解.【詳解】解:由,,所以,,,則,故選:A.【點睛】本題考查了平面向量的線性運算,重點考查了向量的數(shù)量積運算,屬中檔題.10、C【解析】
首先確定集合U,然后求解補集即可.【詳解】由題意可得:,結(jié)合補集的定義可知.本題選擇C選項.【點睛】本題主要考查集合的表示方法,補集的定義等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
直接利用反三角函數(shù)求解角的大小,即可得到答案.【詳解】因為,,根據(jù)反三角函數(shù)的性質(zhì),可得.故答案為:.【點睛】本題主要考查了三角方程的解法,以及反三角函數(shù)的應用,屬于基礎題.12、【解析】
利用兩個數(shù)的商是正數(shù)等價于兩個數(shù)同號;將已知的分式不等式轉(zhuǎn)化為整式不等式,求出解集.【詳解】同解于解得或故答案為:【點睛】本題考查解分式不等式,利用等價變形轉(zhuǎn)化為整式不等式是解題的關(guān)鍵.13、(或)【解析】
先設,根據(jù)題意得到,再由兩角和的正切公式求出,得到,進而可得出結(jié)果.【詳解】設,則所以,所以,因此.故答案為【點睛】本題主要考查三角恒等變換的應用,熟記公式即可,屬于??碱}型.14、【解析】
利用等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,求出a1,即可求出a1.【詳解】∵等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,
∴(a1+4)1=a1(a1+2),
∴a1=-8,
∴a1=-2.
故答案為-2..【點睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列的通項,考查學生的計算能力,屬基礎題..15、【解析】
由圖可知,由勾股定理可得,利用等差數(shù)列的通項公式求解即可.【詳解】根據(jù)圖形,因為都是直角三角形,,是以1為首項,以1為公差的等差數(shù)列,,,故答案為.【點睛】本題主要考查歸納推理的應用,等差數(shù)列的定義與通項公式,以及數(shù)形結(jié)合思想的應用,意在考查綜合應用所學知識解答問題的能力,屬于與中檔題.16、【解析】
先作出線面角,再利用三角函數(shù)求解即可.【詳解】如圖,設正四棱錐的棱長為1,作在底面的射影,則為與底面所成角,為正方形的中心,,,,故答案為.【點睛】本題考查線面角,考查學生的計算能力,作出線面角是關(guān)鍵.屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)∠A=120°.【解析】
由正弦定理求得b,由余弦定理求得cos∠A,進而求出∠A的值.【詳解】(1)由正弦定理得=可得,==,所以b==1.(2)由余弦定理得cosA===,又因為,所以∠A=120°.【點睛】本題考查正弦定理、余弦定理的應用,屬基礎題,根據(jù)正弦定理求出b的值,是解題的關(guān)鍵.18、(1)周期:,頻率:,振幅:,初相:;(2)當時,;當時,;當時,;當時,;當時,.【解析】
(1)按照函數(shù)的周期、頻率、振幅和初相的求法求解即可;(2)將,,,,分別代入函數(shù)關(guān)系中計算即可.【詳解】(1)周期:,頻率:,振幅:,初相:;(2)當時,,當時,,當時,,當時,,當時,.【點睛】本題考查函數(shù)模型在物理學中的應用,考查對基礎知識的掌握,考查計算能力.19、(I)或;(II).【解析】
(I)令,將有三個零點問題,轉(zhuǎn)化為有三個不同的解的解決.畫出和的圖像,結(jié)合圖像以及二次函數(shù)的判別式分類討論,由此求得的值.(II)令,將恒成立不等式等價轉(zhuǎn)化為恒成立,通過對分類討論,求得的最大值,由此求得的取值范圍.【詳解】(I)由題意等價于有三個不同的解由,可得其函數(shù)圖象如圖所示:聯(lián)立方程:,由可得結(jié)合圖象可知.同理,由可得,因為,結(jié)合圖象可知,綜上可得:或.(Ⅱ)設,原不就價于,兩邊同乘得:,設,原題等價于的最大值.(1)當時,,易得,(2),,易得,所以的最大值為16,即,故.【點睛】本小題主要考查根據(jù)函數(shù)零點個數(shù)求參數(shù),考查數(shù)形結(jié)合的數(shù)學思想方法,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查不等式恒成立問題的求解策略,考查分類討論的數(shù)學思想,屬于難題.20、,【解析】
利用誘導公式可求的值,根據(jù)是第四象限角可求的值,最后根據(jù)三角函數(shù)的基本關(guān)系式可求的值,根據(jù)誘導公式及倍角公式可求的值.【詳解】,又是第四象限角,所以,所以,.【點睛】本題考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度專業(yè)牧場代牧服務標準合同4篇
- 2025年度臨時停車場帳篷搭建施工合同范本3篇
- 2024物流包裝與裝卸合同
- 2025年度智慧家居產(chǎn)品研發(fā)承包經(jīng)營合同書范文4篇
- 2025年度桉樹種植與生物質(zhì)能利用技術(shù)研發(fā)合同3篇
- 2025年個人汽車抵押貸款抵押權(quán)設立及轉(zhuǎn)讓合同4篇
- 2025年度住宅小區(qū)地下車庫車位使用權(quán)購買合同范本4篇
- 2025年度文化產(chǎn)業(yè)園開發(fā)承包合同股東內(nèi)部合作協(xié)議4篇
- 2024年甲乙雙方石材供需合同
- 2025年度新能源項目地質(zhì)鉆孔工程承包協(xié)議4篇
- 有效排痰的護理ppt(完整版)
- 魯教版七年級數(shù)學下冊(五四制)全冊完整課件
- 英語六級詞匯(全)
- 算法向善與個性化推薦發(fā)展研究報告
- 聚合物的流變性詳解演示文稿
- 電氣設備預防性試驗安全技術(shù)措施
- 醫(yī)院出入口安檢工作記錄表范本
- 內(nèi)科學教學課件:免疫性血小板減少癥(ITP)
- 中華人民共和國文物保護單位登記表
- 《生物制品學》課程教學大綱
- 硅基負極材料項目可行性研究報告_范文參考
評論
0/150
提交評論