版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
重慶綦江長壽巴南三校聯(lián)盟中考數(shù)學猜題卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,BC平分∠ABE,AB∥CD,E是CD上一點,若∠C=35°,則∠BED的度數(shù)為()A.70° B.65° C.62° D.60°2.如圖1是某生活小區(qū)的音樂噴泉,水流在各個方向上沿形狀相同的拋物線路徑落下,其中一個噴水管噴水的最大高度為3m,此時距噴水管的水平距離為1m,在如圖2所示的坐標系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關系式是()A. B.C. D.3.已知,如圖,AB//CD,∠DCF=100°,則∠AEF的度數(shù)為()A.120° B.110° C.100° D.80°4.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④5.-2的倒數(shù)是()A.-2 B. C. D.26.在同一平面直角坐標系中,函數(shù)y=x+k與(k為常數(shù),k≠0)的圖象大致是()A. B.C. D.7.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶38.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④9.下列運算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=610.如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H.給出如下幾個結論:①△AED≌△DFB;②S四邊形BCDG=32其中正確的結論個數(shù)為()A.4 B.3 C.2 D.1二、填空題(本大題共6個小題,每小題3分,共18分)11.某商品原價100元,連續(xù)兩次漲價后,售價為144元.若平均每次增長率為x,則x=__________.12.當__________時,二次函數(shù)有最小值___________.13.“五一”期間,一批九年級同學包租一輛面包車前去竹海游覽,面包車的租金為300元,出發(fā)時,又增加了4名同學,且租金不變,這樣每個同學比原來少分攤了20元車費.若設參加游覽的同學一共有x人,為求x,可列方程_____.14.當關于x的一元二次方程ax2+bx+c=0有實數(shù)根,且其中一個根為另一個根的2倍時,稱之為“倍根方程”.如果關于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值為_____.15.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結BD、DP,BD與CF相交于點H,給出下列結論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結論的序號).16.如圖,直線y=x與雙曲線y=交于A,B兩點,OA=2,點C在x軸的正半軸上,若∠ACB=90°,則點C的坐標為______.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當?shù)谝淮闻c外切時,求平移的時間.18.(8分)為了解黔東南州某縣中考學生的體育考試得分情況,從該縣參加體育考試的4000名學生中隨機抽取了100名學生的體育考試成績作樣本分析,得出如下不完整的頻數(shù)統(tǒng)計表和頻數(shù)分布直方圖.成績分組
組中值
頻數(shù)
25≤x<30
27.5
4
30≤x<35
32.5
m
35≤x<40
37.5
24
40≤x<45
a
36
45≤x<50
47.5
n
50≤x<55
52.5
4
(1)求a、m、n的值,并補全頻數(shù)分布直方圖;(2)若體育得分在40分以上(包括40分)為優(yōu)秀,請問該縣中考體育成績優(yōu)秀學生人數(shù)約為多少?19.(8分)春節(jié)期間,小麗一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游.租車公司:按日收取固定租金80元,另外再按租車時間計費.共享汽車:無固定租金,直接以租車時間(時)計費.如圖是兩種租車方式所需費用y1(元)、y2(元)與租車時間x(時)之間的函數(shù)圖象,根據(jù)以上信息,回答下列問題:(1)分別求出y1、y2與x的函數(shù)表達式;(2)請你幫助小麗一家選擇合算的租車方案.20.(8分)如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經(jīng)過反彈后,球剛好彈到D點位置.求BF的長.21.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當為何值時,AB?AC的值最大?22.(10分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉(zhuǎn)過程中,當∠OAG′是直角時,求α的度數(shù);②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結果不必說明理由.23.(12分)在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準備把“茶路”融入“絲路”,經(jīng)計算,他銷售10kgA級別和20kgB級別茶葉的利潤為4000元,銷售20kgA級別和10kgB級別茶葉的利潤為3500元.(1)求每千克A級別茶葉和B級別茶葉的銷售利潤;(2)若該經(jīng)銷商一次購進兩種級別的茶葉共200kg用于出口,其中B級別茶葉的進貨量不超過A級別茶葉的2倍,請你幫該經(jīng)銷商設計一種進貨方案使銷售總利潤最大,并求出總利潤的最大值.24.觀察下列各式:①②③由此歸納出一般規(guī)律__________.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
由AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可求得∠ABC的度數(shù),又由BC平分∠ABE,即可求得∠ABE的度數(shù),繼而求得答案.【詳解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故選:A.【點睛】本題考查了平行線的性質(zhì),解題的關鍵是掌握平行線的性質(zhì)進行解答.2、D【解析】
根據(jù)圖象可設二次函數(shù)的頂點式,再將點(0,0)代入即可.【詳解】解:根據(jù)圖象,設函數(shù)解析式為由圖象可知,頂點為(1,3)∴,將點(0,0)代入得解得∴故答案為:D.【點睛】本題考查了是根據(jù)實際拋物線形,求函數(shù)解析式,解題的關鍵是正確設出函數(shù)解析式.3、D【解析】
先利用鄰補角得到∠DCE=80°,然后根據(jù)平行線的性質(zhì)求解.【詳解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故選D.【點睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.4、C【解析】∵二次函數(shù)的圖象的開口向上,∴a>0?!叨魏瘮?shù)的圖象y軸的交點在y軸的負半軸上,∴c<0?!叨魏瘮?shù)圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確?!?a﹣b=1a﹣1a=0,因此說法②正確。∵二次函數(shù)y=∴圖象與x軸的另一個交點的坐標是(1,0)?!喟褁=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤?!叨魏瘮?shù)y=∴點(﹣5,y1)關于對稱軸的對稱點的坐標是(3,y1),∵當x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。5、B【解析】
根據(jù)倒數(shù)的定義求解.【詳解】-2的倒數(shù)是-故選B【點睛】本題難度較低,主要考查學生對倒數(shù)相反數(shù)等知識點的掌握6、B【解析】
選項A中,由一次函數(shù)y=x+k的圖象知k<0,由反比例函數(shù)y=的圖象知k>0,矛盾,所以選項A錯誤;選項B中,由一次函數(shù)y=x+k的圖象知k>0,由反比例函數(shù)y=的圖象知k>0,正確,所以選項B正確;由一次函數(shù)y=x+k的圖象知,函數(shù)圖象從左到右上升,所以選項C、D錯誤.故選B.7、A【解析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點晴:本題主要通過證出兩個三角形是相似三角形,再利用相似三角形的性質(zhì):相似三角形的面積之比等于對應邊之比的平方,進而將求面積比的問題轉(zhuǎn)化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關系(銳角三角形函數(shù))即可得出對應邊之比,進而得到面積比.8、B【解析】
由條件設AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結論.【詳解】解:設AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質(zhì)的運用,解答時根據(jù)比例關系設出未知數(shù)表示出線段的長度是關鍵.9、D【解析】
運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.10、B【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項正確;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過點C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四邊形CMGN=2S△CMG=2×12×12CG×③過點F作FP∥AE于P點(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④當點E,F(xiàn)分別是AB,AD中點時(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點E,F(xiàn)分別是AB,AD中點,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項錯誤;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項正確;綜上所述,正確的結論有①③⑤,共3個,故選B.考點:四邊形綜合題.二、填空題(本大題共6個小題,每小題3分,共18分)11、20%.【解析】試題分析:根據(jù)原價為100元,連續(xù)兩次漲價x后,現(xiàn)價為144元,根據(jù)增長率的求解方法,列方程求x.試題解析:依題意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考點:一元二次方程的應用.12、15【解析】二次函數(shù)配方,得:,所以,當x=1時,y有最小值5,故答案為1,5.13、﹣=1.【解析】原有的同學每人分擔的車費應該為,而實際每人分擔的車費為,方程應該表示為:﹣=1.故答案是:﹣=1.14、-1或-4【解析】分析:設“倍根方程”的一個根為,則另一根為,由一元二次方程根與系數(shù)的關系可得,由此可列出關于m的方程,解方程即可求得m的值.詳解:由題意設“倍根方程”的一個根為,另一根為,則由一元二次方程根與系數(shù)的關系可得:,∴,∴,化簡整理得:,解得.故答案為:-1或-4.點睛:本題解題的關鍵是熟悉一元二次方程根與系數(shù)的關系:若一元二次方程的兩根分別為,則.15、①②③【解析】
依據(jù)∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據(jù)△DFP∽△BPH,可得,再根據(jù)BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據(jù)CP=CD,即可得出PD2=PH?CD;根據(jù)三角形面積計算公式,結合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯誤,故答案為:①②③.【點睛】本題考查了正方形的性質(zhì)、相似三角形的判定與性質(zhì)、解直角三角形等知識,正確添加輔助線、靈活運用相關的性質(zhì)定理與判定定理是解題的關鍵.16、(2,0)【解析】
根據(jù)直線y=x與雙曲線y=交于A,B兩點,OA=2,可得AB=2AO=4,再根據(jù)Rt△ABC中,OC=AB=2,即可得到點C的坐標【詳解】如圖所示,∵直線y=x與雙曲線y=交于A,B兩點,OA=2,∴AB=2AO=4,又∵∠ACB=90°,∴Rt△ABC中,OC=AB=2,又∵點C在x軸的正半軸上,∴C(2,0),故答案為(2,0).【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點問題,解決問題的關鍵是利用直角三角形斜邊上中線的性質(zhì)得到OC的長.三、解答題(共8題,共72分)17、(1)直線的解析式為:.(2)平移的時間為5秒.【解析】
(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據(jù)待定系數(shù)法求出函數(shù)的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據(jù)勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.【點睛】本題綜合了待定系數(shù)法求函數(shù)解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經(jīng)常用到的.18、(1)詳見解析(2)2400【解析】
(1)求出組距,然后利用37.5加上組距就是a的值;根據(jù)頻數(shù)分布直方圖即可求得m的值,然后利用總人數(shù)100減去其它各組的人數(shù)就是n的值.(2)利用總人數(shù)4000乘以優(yōu)秀的人數(shù)所占的比例即可求得優(yōu)秀的人數(shù).【詳解】解:(1)組距是:37.5﹣32.5=5,則a=37.5+5=42.5;根據(jù)頻數(shù)分布直方圖可得:m=12;則n=100﹣4﹣12﹣24﹣36﹣4=1.補全頻數(shù)分布直方圖如下:(2)∵優(yōu)秀的人數(shù)所占的比例是:=0.6,∴該縣中考體育成績優(yōu)秀學生人數(shù)約為:4000×0.6=2400(人)19、(1)y1=kx+80,y2=30x;(2)見解析.【解析】
(1)設y1=kx+80,將(2,110)代入求解即可;設y2=mx,將(5,150)代入求解即可;(2)分y1=y2,y1<y2,y1>y2三種情況分析即可.【詳解】解:(1)由題意,設y1=kx+80,將(2,110)代入,得110=2k+80,解得k=15,則y1與x的函數(shù)表達式為y1=15x+80;設y2=mx,將(5,150)代入,得150=5m,解得m=30,則y2與x的函數(shù)表達式為y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1<y2得,15x+80<30x,解得x>;由y1>y2得,15x+80>30x,解得x<.故當租車時間為小時時,兩種選擇一樣;當租車時間大于小時時,選擇租車公司合算;當租車時間小于小時時,選擇共享汽車合算.【點睛】本題考查了一次函數(shù)的應用及分類討論的數(shù)學思想,解答本題的關鍵是掌握待定系數(shù)法求函數(shù)解析式的方法.20、BF的長度是1cm.【解析】
利用“兩角法”證得△BEF∽△CDF,利用相似三角形的對應邊成比例來求線段CF的長度.【詳解】解:如圖,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;∴=,又∵AD=BC=260cm,AB=CD=130cm,AE=60cm∴BE=70cm,CD=130cm,BC=260cm,CF=(260-BF)cm∴=,解得:BF=1.即:BF的長度是1cm.【點睛】本題主要考查相似三角形的判定和性質(zhì),關鍵要掌握:有兩角對應相等的兩三角形相似;兩三角形相似,對應邊的比相等.21、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當d=,即OM=時,AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時.點睛:本題主要考查圓的綜合問題,解題的關鍵是掌握圓的有關性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識點.22、(1)見解析;(1)30°或150°,的長最大值為,此時.【解析】
(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(1)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當∠OAG′=90°時,α=150°;②當旋轉(zhuǎn)到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′=+1,此時α=315°.【詳解】(1)如圖1,延長ED交AG于點H,∵點O是正方形ABCD兩對角線的交點,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 善良為話題的議論文6篇
- 八年級第一學期期末質(zhì)量監(jiān)測語文試題及答案
- 股權轉(zhuǎn)讓協(xié)議書(公司全部轉(zhuǎn)讓)
- 2025-2030全球購物籃和購物車行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國語音生物識別身份驗證行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球光束通量計行業(yè)調(diào)研及趨勢分析報告
- 二零二五年度跨境電商平臺合作伙伴擔保合同范本4篇
- 二零二四年度智能家居抹灰施工合同范本3篇
- 二零二四年水電暖設備安裝與售后服務協(xié)議3篇
- 二年級數(shù)學兩位數(shù)加兩位數(shù)計算題單元練習試題帶答案
- 骨科手術的術后飲食和營養(yǎng)指導
- 2024年中國南方航空股份有限公司招聘筆試參考題庫含答案解析
- 六年級上冊數(shù)學應用題100題
- 個人代賣協(xié)議
- 公安交通管理行政處罰決定書式樣
- 10.《運動技能學習與控制》李強
- 冀教版數(shù)學七年級下冊綜合訓練100題含答案
- 1神經(jīng)外科分級護理制度
- 場館惡劣天氣處置應急預案
- 斜拉橋施工技術之斜拉索圖文并茂
- GB/T 6144-1985合成切削液
評論
0/150
提交評論