安陽市模擬試題中考數(shù)學(xué)考前最后一卷及答案解析_第1頁
安陽市模擬試題中考數(shù)學(xué)考前最后一卷及答案解析_第2頁
安陽市模擬試題中考數(shù)學(xué)考前最后一卷及答案解析_第3頁
安陽市模擬試題中考數(shù)學(xué)考前最后一卷及答案解析_第4頁
安陽市模擬試題中考數(shù)學(xué)考前最后一卷及答案解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安陽市模擬試題中考數(shù)學(xué)考前最后一卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列各數(shù):1.414,,﹣,0,其中是無理數(shù)的為()A.1.414 B. C.﹣ D.02.若點M(﹣3,y1),N(﹣4,y2)都在正比例函數(shù)y=﹣k2x(k≠0)的圖象上,則y1與y2的大小關(guān)系是()A.y1<y2B.y1>y2C.y1=y2D.不能確定3.在一個不透明的口袋里有紅、黃、藍(lán)三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍(lán)球.若隨機摸出一個藍(lán)球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.4.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點,將△ABC沿DE折疊,使點B落在AC邊上點F處,并且DF∥BC,若CF=3,BC=9,則AB的長是()A. B.15 C. D.95.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.6.下列計算結(jié)果為a6的是()A.a(chǎn)2?a3B.a(chǎn)12÷a2C.(a2)3D.(﹣a2)37.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點,點C是劣弧的中點,若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或48.計算﹣1﹣(﹣4)的結(jié)果為()A.﹣3 B.3 C.﹣5 D.59.如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點,則以DE為直徑的圓與BC的位置關(guān)系是()A.相切 B.相交 C.相離 D.無法確定10.如圖所示的四張撲克牌背面完全相同,洗勻后背面朝上,則從中任意翻開一張,牌面數(shù)字是3的倍數(shù)的概率為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.圖1是我國古代建筑中的一種窗格,其中冰裂紋圖案象征著堅冰出現(xiàn)裂紋并開始消溶,形狀無一定規(guī)則,代表一種自然和諧美.圖2是從圖1冰裂紋窗格圖案中提取的由五條線段組成的圖形,則∠1+∠2+∠3+∠4+∠5=度.12.如圖AB是直徑,C、D、E為圓周上的點,則______.13.圖,A,B是反比例函數(shù)y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.14.如圖,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于點C,若OC=6,則AB的長等于__.15.如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為20,則k的值等于_____________.16.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=_____°.17.對于任意非零實數(shù)a、b,定義運算“”,使下列式子成立:,,,,…,則ab=.三、解答題(共7小題,滿分69分)18.(10分)經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有兩輛汽車經(jīng)過這個十字路口.(1)試用樹形圖或列表法中的一種列舉出這兩輛汽車行駛方向所有可能的結(jié)果;并計算兩輛汽車都不直行的概率.(2)求至少有一輛汽車向左轉(zhuǎn)的概率.19.(5分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結(jié)果保留根號形式)20.(8分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.21.(10分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.(1)問題發(fā)現(xiàn)①當(dāng)θ=0°時,=;②當(dāng)θ=180°時,=.(2)拓展探究試判斷:當(dāng)0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉(zhuǎn)過程中,BE的最大值為;②當(dāng)△ADE旋轉(zhuǎn)至B、D、E三點共線時,線段CD的長為.22.(10分)如圖,點G是正方形ABCD對角線CA的延長線一點,對角線BD與AC交于點O,以線段AG為邊作一個正方形AEFG,連接EB、GD.(1)求證:EB=GD;(2)若AB=5,AG=2,求EB的長.23.(12分)兩家超市同時采取通過搖獎返現(xiàn)金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進(jìn)行了統(tǒng)計并制成了圖表(如圖)獎金金額獲獎人數(shù)20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市搖獎的顧客獲得獎金金額的中位數(shù)是,在乙超市搖獎的顧客獲得獎金金額的眾數(shù)是;(2)請你補全統(tǒng)計圖1;(3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?(4)圖2是甲超市的搖獎轉(zhuǎn)盤,黃區(qū)20元、紅區(qū)15元、藍(lán)區(qū)10元、白區(qū)5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?24.(14分)如圖,在⊙O中,AB是直徑,點C是圓上一點,點D是弧BC中點,過點D作⊙O切線DF,連接AC并延長交DF于點E.(1)求證:AE⊥EF;(2)若圓的半徑為5,BD=6求AE的長度.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:根據(jù)無理數(shù)的定義可得是無理數(shù).故答案選B.考點:無理數(shù)的定義.2、A【解析】

根據(jù)正比例函數(shù)的增減性解答即可.【詳解】∵正比例函數(shù)y=﹣k2x(k≠0),﹣k2<0,∴該函數(shù)的圖象中y隨x的增大而減小,∵點M(﹣3,y1),N(﹣4,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,﹣4<﹣3,∴y2>y1,故選:A.【點睛】本題考查了正比例函數(shù)圖象與系數(shù)的關(guān)系:對于y=kx(k為常數(shù),k≠0),當(dāng)k>0時,y=kx的圖象經(jīng)過一、三象限,y隨x的增大而增大;當(dāng)k<0時,y=kx的圖象經(jīng)過二、四象限,y隨x的增大而減小.3、A【解析】

設(shè)黃球有x個,根據(jù)摸出一個球是藍(lán)球的概率是,得出黃球的個數(shù),再根據(jù)概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設(shè)袋子中黃球有x個,根據(jù)題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.【點睛】此題主要考查了概率公式的應(yīng)用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所求的情況數(shù)是解決本題的關(guān)鍵.4、C【解析】

由折疊得到EB=EF,∠B=∠DFE,根據(jù)CE+EB=9,得到CE+EF=9,設(shè)EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EF與CE的長,由FD與BC平行,得到一對內(nèi)錯角相等,等量代換得到一對同位角相等,進(jìn)而確定出EF與AB平行,由平行得比例,即可求出AB的長.【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設(shè)EF=EB=x,得到CE=BC-EB=9-x,根據(jù)勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【點睛】此題考查了翻折變換(折疊問題),涉及的知識有:勾股定理,平行線的判定與性質(zhì),平行線分線段成比例,熟練掌握折疊的性質(zhì)是解本題的關(guān)鍵.5、D【解析】

根據(jù)圓心角,弧,弦的關(guān)系定理可以得出===,根據(jù)圓心角和圓周角的關(guān)鍵即可求出的度數(shù),進(jìn)而求出它的余弦值.【詳解】解:===,故選D.【點睛】本題考查圓心角,弧,弦,圓周角的關(guān)系,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.6、C【解析】

分別根據(jù)同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運算法則逐一計算可得.【詳解】A、a2?a3=a5,此選項不符合題意;

B、a12÷a2=a10,此選項不符合題意;

C、(a2)3=a6,此選項符合題意;

D、(-a2)3=-a6,此選項不符合題意;

故選C.【點睛】本題主要考查冪的運算,解題的關(guān)鍵是掌握同底數(shù)冪相乘、同底數(shù)冪相除、冪的乘方的運算法則.7、C【解析】

由點C是劣弧AB的中點,得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質(zhì)得到PD=2,于是得到結(jié)論.【詳解】∵點C是劣弧AB的中點,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對稱性得,當(dāng)P在OC的左側(cè)時,PB=3+2=5,∴PB的長度為1或5.故選C.【點睛】考查了圓周角,弧,弦的關(guān)系,勾股定理,垂徑定理,正確左側(cè)圖形是解題的關(guān)鍵.8、B【解析】

原式利用減法法則變形,計算即可求出值.【詳解】,故選:B.【點睛】本題主要考查了有理數(shù)的加減,熟練掌握有理數(shù)加減的運算法則是解決本題的關(guān)鍵.9、B【解析】

首先過點A作AM⊥BC,根據(jù)三角形面積求出AM的長,得出直線BC與DE的距離,進(jìn)而得出直線與圓的位置關(guān)系.【詳解】解:過點A作AM⊥BC于點M,交DE于點N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分別是AC、AB的中點,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE為直徑的圓半徑為1.25,∴r=1.25>1.2,∴以DE為直徑的圓與BC的位置關(guān)系是:相交.故選B.【點睛】本題考查了直線和圓的位置關(guān)系,利用中位線定理得出BC到圓心的距離與半徑的大小關(guān)系是解題的關(guān)鍵.10、C【解析】

根據(jù)題意確定所有情況的數(shù)目,再確定符合條件的數(shù)目,根據(jù)概率的計算公式即可.【詳解】解:由題意可知,共有4種情況,其中是3的倍數(shù)的有6和9,∴是3的倍數(shù)的概率,故答案為:C.【點睛】本題考查了概率的計算,解題的關(guān)鍵是熟知概率的計算公式.二、填空題(共7小題,每小題3分,滿分21分)11、360°.【解析】

根據(jù)多邊形的外角和等于360°解答即可.【詳解】由多邊形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案為360°.【點睛】本題考查的是多邊形的內(nèi)角和外角,掌握多邊形的外角和等于360°是解題的關(guān)鍵.12、90°【解析】

連接OE,根據(jù)圓周角定理即可求出答案.【詳解】解:連接OE,

根據(jù)圓周角定理可知:

∠C=∠AOE,∠D=∠BOE,

則∠C+∠D=(∠AOE+∠BOE)=90°,

故答案為:90°.【點睛】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.13、1.【解析】先設(shè)點D坐標(biāo)為(a,b),得出點B的坐標(biāo)為(2a,2b),A的坐標(biāo)為(4a,b),再根據(jù)△AOD的面積為3,列出關(guān)系式求得k的值.解:設(shè)點D坐標(biāo)為(a,b),∵點D為OB的中點,∴點B的坐標(biāo)為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數(shù)圖象上,∴A的坐標(biāo)為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運用待定系數(shù)法求反比例函數(shù)解析式,根據(jù)△AOD的面積為1列出關(guān)系式是解題的關(guān)鍵.14、18【解析】連接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案為18.15、﹣24【解析】分析:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設(shè)CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點C的坐標(biāo)為,這樣由點C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點C作CF⊥AO于點F,過點D作DE∥OA交CO于點E,設(shè)CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點C的坐標(biāo)為,∵點C在反比例函數(shù)的圖象上,∴k=.故答案為:-24.點睛:本題的解題要點有兩點:(1)作出如圖所示的輔助線,設(shè)CF=4x,結(jié)合已知條件把OF和OA用含x的式子表達(dá)出來;(2)由四邊形AOCB是菱形,點D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.16、40【解析】如圖,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案為:40.17、【解析】試題分析:根據(jù)已知數(shù)字等式得出變化規(guī)律,即可得出答案:∵,,,,…,∴。三、解答題(共7小題,滿分69分)18、(1);(2).【解析】

(1)可以采用列表法或樹狀圖求解.可以得到一共有9種情況,從中找到兩輛汽車都不直行的結(jié)果數(shù),根據(jù)概率公式計算可得;(2)根據(jù)樹狀圖得出至少有一輛汽車向左轉(zhuǎn)的結(jié)果數(shù),根據(jù)概率公式可得答案.【詳解】(1)畫“樹形圖”列舉這兩輛汽車行駛方向所有可能的結(jié)果如圖所示:∴這兩輛汽車行駛方向共有9種可能的結(jié)果,其中兩輛汽車都不直行的有4種結(jié)果,所以兩輛汽車都不直行的概率為;(2)由(1)中“樹形圖”知,至少有一輛汽車向左轉(zhuǎn)的結(jié)果有5種,且所有結(jié)果的可能性相等∴P(至少有一輛汽車向左轉(zhuǎn))=.【點睛】此題考查了樹狀圖法求概率.解題的關(guān)鍵是根據(jù)題意畫出樹狀圖,再由概率=所求情況數(shù)與總情況數(shù)之比求解.19、電視塔高為米,點的鉛直高度為(米).【解析】

過點P作PF⊥OC,垂足為F,在Rt△OAC中利用三角函數(shù)求出OC=100,根據(jù)山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函數(shù)即可求解.【詳解】過點P作PF⊥OC,垂足為F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA?tan∠OAC=100(米),過點P作PB⊥OA,垂足為B.由i=1:2,設(shè)PB=x,則AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【點睛】本題考查了特殊的直角三角形,三角函數(shù)的實際應(yīng)用,中等難度,作出輔助線構(gòu)造直角三角形并熟練應(yīng)用三角函數(shù)是解題關(guān)鍵.20、﹣6+2【解析】分析:直接利用二次根式的性質(zhì)以及絕對值的性質(zhì)和特殊角的三角函數(shù)值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點睛:此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.21、(1)①;(2)無變化,證明見解析;(3)①2+2+1或﹣1.【解析】

(1)①先判斷出DE∥CB,進(jìn)而得出比例式,代值即可得出結(jié)論;②先得出DE∥BC,即可得出,,再用比例的性質(zhì)即可得出結(jié)論;(2)先∠CAD=∠BAE,進(jìn)而判斷出△ADC∽△AEB即可得出結(jié)論;(3)分點D在BE的延長線上和點D在BE上,先利用勾股定理求出BD,再借助(2)結(jié)論即可得出CD.【詳解】解:(1)①當(dāng)θ=0°時,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案為,②當(dāng)θ=180°時,如圖1,∵DE∥BC,∴,∴,即:,∴,故答案為;(2)當(dāng)0°≤θ<360°時,的大小沒有變化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①當(dāng)點E在BA的延長線時,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如圖2,當(dāng)點E在BD上時,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根據(jù)勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如圖3,當(dāng)點D在BE的延長線上時,在Rt△ADB中,AD=,AB=2,根據(jù)勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案為+1或﹣1.【點睛】此題是相似形綜合題,主要考查了等腰直角三角形的性質(zhì)和判定,勾股定理,相似三角形的判定和性質(zhì),比例的基本性質(zhì)及分類討論的數(shù)學(xué)思想,解(1)的關(guān)鍵是得出DE∥BC,解(2)的關(guān)鍵是判斷出△ADC∽△AEB,解(3)關(guān)鍵是作出圖形求出BD,是一道中等難度的題目.22、(1)證明見解析;(2);【解析】

(1)根據(jù)正方形的性質(zhì)得到∠GAD=∠EAB,證明△GAD≌△EAB,根據(jù)全等三角形的性質(zhì)證明;(2)根據(jù)正方形的性質(zhì)得到BD⊥AC,AC=BD=5,根據(jù)勾股定理計算即可.【詳解】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論