版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省臨沂商城外國語校2023-2024學年中考數(shù)學模擬預測題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知a為整數(shù),且<a<,則a等于A.1 B.2 C.3 D.42.-3的倒數(shù)是()A.3 B.13 C.-13.如圖,在中,.點是的中點,連結,過點作,分別交于點,與過點且垂直于的直線相交于點,連結.給出以下四個結論:①;②點是的中點;③;④,其中正確的個數(shù)是()A.4 B.3 C.2 D.14.如圖,AB是⊙O的直徑,點C、D是圓上兩點,且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°5.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-16.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米7.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小8.下列各式中,不是多項式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)9.有理數(shù)a,b在數(shù)軸上的對應點如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④10.已知關于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.511.關于x的一元一次不等式≤﹣2的解集為x≥4,則m的值為()A.14 B.7 C.﹣2 D.212.如圖:已知AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,則線段AP的長不可能是()A.3 B.3.5 C.4 D.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC中,AB=5,AC=6,將△ABC翻折,使得點A落到邊BC上的點A′處,折痕分別交邊AB、AC于點E,點F,如果A′F∥AB,那么BE=_____.14.已知:如圖,AD、BE分別是△ABC的中線和角平分線,AD⊥BE,AD=BE=6,則AC的長等于______.15.二次函數(shù)y=(x﹣2m)2+1,當m<x<m+1時,y隨x的增大而減小,則m的取值范圍是_____.16.已知拋物線與直線在之間有且只有一個公共點,則的取值范圍是__.17.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn),,DE=6,則EF=.18.如圖,已知,要使,還需添加一個條件,則可以添加的條件是.(只寫一個即可,不需要添加輔助線)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)三輛汽車經(jīng)過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.(1)三輛汽車經(jīng)過此收費站時,都選擇A通道通過的概率是;(2)求三輛汽車經(jīng)過此收費站時,至少有兩輛汽車選擇B通道通過的概率.20.(6分)(1)(問題發(fā)現(xiàn))小明遇到這樣一個問題:如圖1,△ABC是等邊三角形,點D為BC的中點,且滿足∠ADE=60°,DE交等邊三角形外角平分線CE所在直線于點E,試探究AD與DE的數(shù)量關系.(1)小明發(fā)現(xiàn),過點D作DF//AC,交AC于點F,通過構造全等三角形,經(jīng)過推理論證,能夠使問題得到解決,請直接寫出AD與DE的數(shù)量關系:;(2)(類比探究)如圖2,當點D是線段BC上(除B,C外)任意一點時(其它條件不變),試猜想AD與DE之間的數(shù)量關系,并證明你的結論.(3)(拓展應用)當點D在線段BC的延長線上,且滿足CD=BC(其它條件不變)時,請直接寫出△ABC與△ADE的面積之比.21.(6分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)22.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).23.(8分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當兩個全等的直角三角形如圖(1)擺放時可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點D作DF⊥BC交BC的延長線于點F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡得:a2+b2=c2請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c224.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.25.(10分)如圖,已知函數(shù)(x>0)的圖象經(jīng)過點A、B,點B的坐標為(2,2).過點A作AC⊥x軸,垂足為C,過點B作BD⊥y軸,垂足為D,AC與BD交于點F.一次函數(shù)y=ax+b的圖象經(jīng)過點A、D,與x軸的負半軸交于點E.若AC=OD,求a、b的值;若BC∥AE,求BC的長.26.(12分)(1)計算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化簡,再求值:(x﹣)÷,其中x=,y=﹣1.27.(12分)太原市志愿者服務平臺旨在弘揚“奉獻、關愛、互助、進步”的志愿服務精神,培育志思服務文化,推動太原市志愿服務的制度化、常態(tài)化,弘揚社會正能量,截止到2018年5月9日16:00,在該平臺注冊的志愿組織數(shù)達2678個,志愿者人數(shù)達247951人,組織志愿活動19748次,累計志愿服務時間3889241小時,學校為了解共青團員志愿服務情況,調查小組根據(jù)平臺數(shù)據(jù)進行了抽樣問卷調查,過程如下:(1)收集、整理數(shù)據(jù):從九年級隨機抽取40名共青團員,將其志愿服務時間按如下方式分組(A:0~5小時;B:5~10小時;C:10~15小時;D:15~20小時;E:20~25小時;F:25~30小時,注:每組含最小值,不含最大值)得到這40名志愿者服務時間如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并將上述數(shù)據(jù)整理在如下的頻數(shù)分布表中,請你補充其中的數(shù)據(jù):志愿服務時間ABCDEF頻數(shù)34107(2)描述數(shù)據(jù):根據(jù)上面的頻數(shù)分布表,小明繪制了如下的頻數(shù)直方圖(圖1),請將空缺的部分補充完整;(3)分析數(shù)據(jù):①調查小組從八年級共青團員中隨機抽取40名,將他們的志愿服務時間按(1)題的方式整理后,畫出如圖2的扇形統(tǒng)計圖.請你對比八九年級的統(tǒng)計圖,寫出一個結論;②校團委計劃組織志愿服務時間不足10小時的團員參加義務勞動,根據(jù)上述信息估計九年級200名團員中參加此次義務勞動的人數(shù)約為人;(4)問題解決:校團委計劃組織中考志愿服務活動,共甲、乙、丙三個服務點,八年級的小穎和小文任意選擇一個服務點參與志服務,求兩人恰好選在同一個服務點的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
直接利用,接近的整數(shù)是1,進而得出答案.【詳解】∵a為整數(shù),且<a<,∴a=1.故選:.【點睛】考查了估算無理數(shù)大小,正確得出無理數(shù)接近的有理數(shù)是解題關鍵.2、C【解析】
由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C3、C【解析】
用特殊值法,設出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關線段的長;易證△GAB≌△DBC,求出相關線段的長;再證AG∥BC,求出相關線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【詳解】解:由題意知,△ABC是等腰直角三角形,設AB=BC=2,則AC=2,∵點D是AB的中點,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,F(xiàn)E=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質以及等腰直角三角形的相關性質,中等難度,注意合理的運用特殊值法是解題關鍵.4、C【解析】
由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、A【解析】
分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個條件需同時具備,缺一不可.據(jù)此可以解答本題.【詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【點睛】此題考查的是對分式的值為2的條件的理解,該類型的題易忽略分母不為2這個條件.6、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應用.7、D【解析】
根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,
∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;
∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關鍵是掌握中位數(shù)和方差的定義.8、D【解析】
原式分解因式,判斷即可.【詳解】原式=2(x2﹣2x+1)=2(x﹣1)2。故選:D.【點睛】考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.9、B【解析】分析:本題是考察數(shù)軸上的點的大小的關系.解析:由圖知,b<0<a,故①正確,因為b點到原點的距離遠,所以|b|>|a|,故②錯誤,因為b<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.10、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.11、D【解析】
解不等式得到x≥m+3,再列出關于m的不等式求解.【詳解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵關于x的一元一次不等式≤﹣1的解集為x≥4,∴m+3=4,解得m=1.故選D.考點:不等式的解集12、A【解析】
根據(jù)直線外一點和直線上點的連線中,垂線段最短的性質,可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,得AP≥AB,AP≥3.5,故選:A.【點睛】本題考查垂線段最短的性質,解題關鍵是利用垂線段的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依據(jù)△A'CF∽△BCA,可得,即=,進而得到BE=.【詳解】解:如圖,由折疊可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折疊可得,AF=A'F,設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴,即=,解得x=,∴BE=,故答案為:.【點睛】本題主要考查了折疊問題以及相似三角形的判定與性質的運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,對應邊和對應角相等.14、9【解析】試題分析:如圖,過點C作CF⊥AD交AD的延長線于點F,可得BE∥CF,易證△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分線且AD⊥BE,BG是公共邊,可證得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=952.考點:全等三角形的判定及性質;相似三角形的判定及性質;勾股定理.15、m>1【解析】由條件可知二次函數(shù)對稱軸為x=2m,且開口向上,由二次函數(shù)的性質可知在對稱軸的左側時y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點睛:本題主要考查二次函數(shù)的性質,掌握當拋物線開口向下時,在對稱軸右側y隨x的增大而減小是解題的關鍵.16、或.【解析】
聯(lián)立方程可得,設,從而得出的圖象在上與x軸只有一個交點,當△時,求出此時m的值;當△時,要使在之間有且只有一個公共點,則當x=-2時和x=2時y的值異號,從而求出m的取值范圍;【詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個公共點,即的圖象在上與x軸只有一個交點,當△時,即△解得:,當時,當時,,滿足題意,當△時,令,,令,,,令代入解得:,此方程的另外一個根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【點睛】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點問題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點問題轉化為一元二次方程解的問題是解決此題的關鍵.17、1.【解析】試題分析:∵AD∥BE∥CF,∴,即,∴EF=1.故答案為1.考點:平行線分線段成比例.18、可添∠ABD=∠CBD或AD=CD.【解析】
由AB=BC結合圖形可知這兩個三角形有兩組邊對應相等,添加一組邊利用SSS證明全等,也可以添加一對夾角相等,利用SAS證明全等,據(jù)此即可得答案.【詳解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS),故答案為∠ABD=∠CBD或AD=CD.【點睛】本題考查了三角形全等的判定,結合圖形與已知條件靈活應用全等三角形的判定方法是解題的關鍵.熟記全等三角形的判定方法有:SSS,SAS,ASA,AAS.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)【解析】
(1)用樹狀圖分3次實驗列舉出所有情況,再看3輛車都選擇A通道通過的情況數(shù)占總情況數(shù)的多少即可;
(2)由(1)可知所有可能的結果數(shù)目,再看至少有兩輛汽車選擇B通道通過的情況數(shù)占總情況數(shù)的多少即可.【詳解】解:(1)畫樹狀圖得:共8種情況,甲、乙、丙三輛車都選擇A通道通過的情況數(shù)有1種,所以都選擇A通道通過的概率為,故答案為:;(2)∵共有8種等可能的情況,其中至少有兩輛汽車選擇B通道通過的有4種情況,∴至少有兩輛汽車選擇B通道通過的概率為.【點睛】考查了概率的求法;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比;得到所求的情況數(shù)是解決本題的關鍵.20、(1)AD=DE;(2)AD=DE,證明見解析;(3).【解析】試題分析:本題難度中等.主要考查學生對探究例子中的信息進行歸納總結.并能夠結合三角形的性質是解題關鍵.試題解析:(10分)(1)AD=DE.(2)AD=DE.證明:如圖2,過點D作DF//AC,交AC于點F,∵△ABC是等邊三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF//AC,∴∠BDF=∠BFD=60°∴△BDF是等邊三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°.∵EC是外角的平分線,∠DCE=120°=∠AFD.∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD.∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠FAD=∠EDC.∴△AFD≌△DCE(ASA),∴AD=DE;(3).考點:1.等邊三角形探究題;2.全等三角形的判定與性質;3.等邊三角形的判定與性質.21、1米.【解析】試題分析:作BE⊥DH,知GH=BE、BG=EH=10,設AH=x,則BE=GH=43+x,由CH=AHtan∠CAH=tan55°?x知CE=CH﹣EH=tan55°?x﹣10,根據(jù)BE=DE可得關于x的方程,解之可得.試題解析:解:如圖,作BE⊥DH于點E,則GH=BE、BG=EH=10,設AH=x,則BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°?x﹣10+35,解得:x≈45,∴CH=tan55°?x=1.4×45=1.答:塔桿CH的高為1米.點睛:本題考查了解直角三角形的應用,解答本題要求學生能借助仰角構造直角三角形并解直角三角形.22、(1)見解析;(2)40°.【解析】
(1)根據(jù)角平分線的性質可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進而可得出∠ACB=2∠ECD=70°,再根據(jù)等腰三角形的性質結合三角形內角和定理即可求出∠A的度數(shù).【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【點睛】本題考查了等腰三角形的判定與性質、平行線的性質以及角平分線.解題的關鍵是:(1)根據(jù)平行線的性質結合角平分線的性質找出∠EDC=∠ECD;(2)利用角平分線的性質結合等腰三角形的性質求出∠ACB=∠ABC=70°.23、見解析.【解析】
首先連結BD,過點B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.【詳解】證明:連結BD,過點B作DE邊上的高BF,則BF=b-a,∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【點睛】此題考查了勾股定理的證明,用兩種方法表示出五邊形ACBED的面積是解本題的關鍵.24、(1)證明見解析;(2)CE=1.【解析】
(1)根據(jù)等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內錯角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.
(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【詳解】(1)證明:如圖,連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切線.
(2)解:過O作OH⊥BF,
∴BH=BF=3,四邊形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【點睛】本題考查切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線和垂徑定理以及勾股定理的運用,具有一定的綜合性.25、(1)a=,b=2;(2)BC=.【解析】試題分析:(1)首先利用反比例函數(shù)圖象上點的坐標性質得出k的值,再得出A、D點坐標,進而求出a,b的值;(2)設A點的坐標為:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)定制采購合同方案
- 信息化審計服務合同
- 教育采購合同格式
- 輕工配件供需合同
- 專業(yè)一體化傳播合同案例
- 按揭貸款借款合同法律規(guī)定
- 潛水排污泵買賣合同
- 酒店清潔與管理服務合同范本
- 保健品代理合同注意事項
- 有機蔬菜生鮮購買協(xié)議
- 腫瘤病人常見癥狀護理
- 瑜伽基礎知識題庫單選題100道及答案解析
- 廣東省廣州市2024年中考數(shù)學真題試卷(含答案)
- 2024年資格考試-注冊質量經(jīng)理考試近5年真題附答案
- 浙江省臺州市2023-2024學年七年級上學期期末數(shù)學試題(含答案)
- 2024年秋季國家開放大學《形勢與政策》大作業(yè)及答案
- 2024年上海寶山普陀中考英語一模作文集
- 2024年秋新人教版地理七年級上冊課件 第一章 地球 1.3.1 地球的自轉
- 設計變更控制程序
- 三級筑路工(高級)職業(yè)技能鑒定考試題庫(含答案)
- 2024年新高考英語全國卷I分析教學設計
評論
0/150
提交評論