廣西來賓市部分中學中考猜題數(shù)學試卷及答案解析_第1頁
廣西來賓市部分中學中考猜題數(shù)學試卷及答案解析_第2頁
廣西來賓市部分中學中考猜題數(shù)學試卷及答案解析_第3頁
廣西來賓市部分中學中考猜題數(shù)學試卷及答案解析_第4頁
廣西來賓市部分中學中考猜題數(shù)學試卷及答案解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣西來賓市部分中學中考猜題數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.估計介于()A.0與1之間 B.1與2之間 C.2與3之間 D.3與4之間2.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.3.如圖,小明從A處出發(fā)沿北偏東60°方向行走至B處,又沿北偏西20°方向行走至C處,此時需把方向調(diào)整到與出發(fā)時一致,則方向的調(diào)整應是()A.右轉(zhuǎn)80° B.左轉(zhuǎn)80° C.右轉(zhuǎn)100° D.左轉(zhuǎn)100°4.將二次函數(shù)y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數(shù)表達式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-25.關于x的一元二次方程x2+8x+q=0有兩個不相等的實數(shù)根,則q的取值范圍是()A.q<16 B.q>16C.q≤4 D.q≥46.已知代數(shù)式x+2y的值是5,則代數(shù)式2x+4y+1的值是()A.6

B.7C.11D.127.如圖,矩形ABCD內(nèi)接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.8.在同一平面直角坐標系中,函數(shù)y=x+k與(k為常數(shù),k≠0)的圖象大致是()A. B.C. D.9.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.10.若關于x的不等式組只有5個整數(shù)解,則a的取值范圍()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.反比例函數(shù)的圖象經(jīng)過點和,則______.12.如圖,在△ABC中,∠ACB=90°,AC=BC=3,將△ABC折疊,使點A落在BC邊上的點D處,EF為折痕,若AE=2,則sin∠BFD的值為_____.13.二次函數(shù)y=(x﹣2m)2+1,當m<x<m+1時,y隨x的增大而減小,則m的取值范圍是_____.14.設[x)表示大于x的最小整數(shù),如[3)=4,[?1.2)=?1,則下列結論中正確的是______.(填寫所有正確結論的序號)①[0)=0;②[x)?x的最小值是0;③[x)?x的最大值是0;④存在實數(shù)x,使[x)?x=0.5成立.15.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于_____.16.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.17.分式有意義時,x的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)我市某中學決定在八年級陽光體育“大課間”活動中開設A:實心球,B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成如圖①②的統(tǒng)計圖.請結合圖中的信息解答下列問題:(1)在這項調(diào)查中,共調(diào)查了多少名學生?(2)將兩個統(tǒng)計圖補充完整;(3)若調(diào)查到喜歡“立定跳遠”的5名學生中有3名男生,2名女生.現(xiàn)從這5名學生中任意抽取2名學生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.19.(5分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?20.(8分)某學校八、九兩個年級各有學生180人,為了解這兩個年級學生的體質(zhì)健康情況,進行了抽樣調(diào)查,具體過程如下:收集數(shù)據(jù)從八、九兩個年級各隨機抽取20名學生進行體質(zhì)健康測試,測試成績(百分制)如下:八年級7886748175768770759075798170748086698377九年級9373888172819483778380817081737882807040整理、描述數(shù)據(jù)將成績按如下分段整理、描述這兩組樣本數(shù)據(jù):成績(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年級人數(shù)0011171九年級人數(shù)1007102(說明:成績80分及以上為體質(zhì)健康優(yōu)秀,70~79分為體質(zhì)健康良好,60~69分為體質(zhì)健康合格,60分以下為體質(zhì)健康不合格)分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:年級平均數(shù)中位數(shù)眾數(shù)方差八年級78.377.57533.6九年級7880.5a52.1(1)表格中a的值為______;請你估計該校九年級體質(zhì)健康優(yōu)秀的學生人數(shù)為多少?根據(jù)以上信息,你認為哪個年級學生的體質(zhì)健康情況更好一些?請說明理由.(請從兩個不同的角度說明推斷的合理性)21.(10分)已知,拋物線的頂點為,它與軸交于點,(點在點左側).()求點、點的坐標;()將這個拋物線的圖象沿軸翻折,得到一個新拋物線,這個新拋物線與直線交于點.①求證:點是這個新拋物線與直線的唯一交點;②將新拋物線位于軸上方的部分記為,將圖象以每秒個單位的速度向右平移,同時也將直線以每秒個單位的速度向上平移,記運動時間為,請直接寫出圖象與直線有公共點時運動時間的范圍.22.(10分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,求證:AF=DC;若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.23.(12分)如圖所示:△ABC是等腰三角形,∠ABC=90°.(1)尺規(guī)作圖:作線段AB的垂直平分線l,垂足為H.(保留作圖痕跡,不寫作法);(2)垂直平分線l交AC于點D,求證:AB=2DH.24.(14分)某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.(1)求A、B兩種品牌的化妝品每套進價分別為多少元?(2)若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元;根據(jù)市場需求,店老板決定購進這兩種品牌化妝品共50套,且進貨價錢不超過4000元,應如何選擇進貨方案,才能使賣出全部化妝品后獲得最大利潤,最大利潤是多少?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

解:∵,∴,即∴估計在2~3之間故選C.【點睛】本題考查估計無理數(shù)的大?。?、B【解析】

先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.3、A【解析】

60°+20°=80°.由北偏西20°轉(zhuǎn)向北偏東60°,需要向右轉(zhuǎn).故選A.4、A【解析】試題分析:根據(jù)函數(shù)圖象右移減、左移加,上移加、下移減,可得答案.解:將二次函數(shù)y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數(shù)表達式是y=(x﹣1)2+2,故選A.考點:二次函數(shù)圖象與幾何變換.5、A【解析】∵關于x的一元二次方程x2+8x+q=0有兩個不相等的實數(shù)根,∴△>0,即82-4q>0,∴q<16,故選A.6、C【解析】

根據(jù)題意得出x+2y=5,將所求式子前兩項提取2變形后,把x+2y=5代入計算即可求出值.【詳解】∵x+2y=5,∴2x+4y=10,則2x+4y+1=10+1=1.故選C.【點睛】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.7、A【解析】

連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點睛】本題考查了圓周角定理與勾股定理,解題的關鍵是熟練的掌握圓周角定理與勾股定理的應用.8、B【解析】

選項A中,由一次函數(shù)y=x+k的圖象知k<0,由反比例函數(shù)y=的圖象知k>0,矛盾,所以選項A錯誤;選項B中,由一次函數(shù)y=x+k的圖象知k>0,由反比例函數(shù)y=的圖象知k>0,正確,所以選項B正確;由一次函數(shù)y=x+k的圖象知,函數(shù)圖象從左到右上升,所以選項C、D錯誤.故選B.9、D【解析】

先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關,因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.10、A【解析】

分別解兩個不等式得到得x<20和x>3-2a,由于不等式組只有5個整數(shù)解,則不等式組的解集為3-2a<x<20,且整數(shù)解為15、16、17、18、19,得到14≤3-2a<15,然后再解關于a的不等式組即可.【詳解】解①得x<20

解②得x>3-2a,

∵不等式組只有5個整數(shù)解,

∴不等式組的解集為3-2a<x<20,

∴14≤3-2a<15,故選:A【點睛】本題主要考查對不等式的性質(zhì),解一元一次不等式,一元一次不等式組的整數(shù)解等知識點的理解和掌握,能求出不等式14≤3-2a<15是解此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-1【解析】

先把點(1,6)代入反比例函數(shù)y=,求出k的值,進而可得出反比例函數(shù)的解析式,再把點(m,-3)代入即可得出m的值.【詳解】解:∵反比例函數(shù)y=的圖象經(jīng)過點(1,6),∴6=,解得k=6,∴反比例函數(shù)的解析式為y=.∵點(m,-3)在此函數(shù)圖象上上,∴-3=,解得m=-1.故答案為-1.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.12、【解析】分析:過點D作DGAB于點G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數(shù)求得,;設AF=DF=x,則FG=,在Rt△DFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值詳解:如圖所示,過點D作DGAB于點G.根據(jù)折疊性質(zhì),可知△AEF△DEF,∴AE=DE=2,AF=DF,CE=AC-AE=1,在Rt△DCE中,由勾股定理得,∴DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,,;設AF=DF=x,得FG=AB-AF-GB=,在Rt△DFG中,,即=,解得,∴==.故答案為.點睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關鍵是靈活運用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識來解決問題.13、m>1【解析】由條件可知二次函數(shù)對稱軸為x=2m,且開口向上,由二次函數(shù)的性質(zhì)可知在對稱軸的左側時y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點睛:本題主要考查二次函數(shù)的性質(zhì),掌握當拋物線開口向下時,在對稱軸右側y隨x的增大而減小是解題的關鍵.14、④【解析】

根據(jù)題意[x)表示大于x的最小整數(shù),結合各項進行判斷即可得出答案.【詳解】①[0)=1,故本項錯誤;②[x)?x>0,但是取不到0,故本項錯誤;③[x)?x?1,即最大值為1,故本項錯誤;④存在實數(shù)x,使[x)?x=0.5成立,例如x=0.5時,故本項正確.故答案是:④.【點睛】此題考查運算的定義,解題關鍵在于理解題意的運算法則.15、40°.【解析】

∵將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.16、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關于x軸的對稱點D′,當點E在線段CD′上時的周長最小.詳解:如圖,作點D關于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質(zhì),相似三角形的判定與性質(zhì)等,找出點E的位置是解題的關鍵.17、x<1【解析】

要使代數(shù)式有意義時,必有1﹣x>2,可解得x的范圍.【詳解】根據(jù)題意得:1﹣x>2,解得:x<1.故答案為x<1.【點睛】考查了分式和二次根式有意義的條件.二次根式有意義,被開方數(shù)為非負數(shù),分式有意義,分母不為2.三、解答題(共7小題,滿分69分)18、(1)50名;(2)補圖見解析;(3)剛好抽到同性別學生的概率是【解析】試題分析:(1)由題意可得本次調(diào)查的學生共有:15÷30%;(2)先求出C的人數(shù),再求出C的百分比即可;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與剛好抽到同性別學生的情況,再利用概率公式即可求得答案.試題解析:(1)根據(jù)題意得:15÷30%=50(名).答;在這項調(diào)查中,共調(diào)查了50名學生;(2)圖如下:(3)用A表示男生,B表示女生,畫圖如下:共有20種情況,同性別學生的情況是8種,則剛好抽到同性別學生的概率是.19、1千米/時【解析】

設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)由貨輪往返兩個碼頭之間,可知順水航行的距離與逆水航行的距離相等列出方程,解方程即可求解.【詳解】設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)題意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/時.【點睛】本題考查了一元一次方程的應用,讀懂題意,找出等量關系,設出未知數(shù)后列出方程是解決此類題目的基本思路.20、(1)81;(2)108人;(3)見解析.【解析】

(1)根據(jù)眾數(shù)的概念解答;(2)求出九年級學生體質(zhì)健康的優(yōu)秀率,計算即可;(3)分別從不同的角度進行評價.【詳解】解:(1)由測試成績可知,81分出現(xiàn)的次數(shù)最多,∴a=81,故答案為:81;(2)九年級學生體質(zhì)健康的優(yōu)秀率為:,九年級體質(zhì)健康優(yōu)秀的學生人數(shù)為:180×60%=108(人),答:估計該校九年級體質(zhì)健康優(yōu)秀的學生人數(shù)為108人;(3)①因為八年級學生的平均成績高于九年級的平均成績,且八年級學生成績的方差小于九年級的方差,所以八年級學生的體質(zhì)健康情況更好一些.②因為九年級學生的優(yōu)秀率(60%)高于八年級的優(yōu)秀率(40%),且九年級學生成績的眾數(shù)或中位數(shù)高于八年級的眾數(shù)或中位數(shù),所以九年級學生的體質(zhì)健康情況更好一些.【點睛】本題考查的是用樣本估計總體、方差、平均數(shù)、眾數(shù)和中位數(shù)的概念和性質(zhì),正確求出樣本的眾數(shù)、理解方差和平均數(shù)、眾數(shù)、中位線的性質(zhì)是解題的關鍵.21、(1)B(-3,0),C(1,0);(2)①見解析;②≤t≤6.【解析】

(1)根據(jù)拋物線的頂點坐標列方程,即可求得拋物線的解析式,令y=0,即可得解;(2)①根據(jù)翻折的性質(zhì)寫出翻折后的拋物線的解析式,與直線方程聯(lián)立,求得交點坐標即可;②當t=0時,直線與拋物線只有一個交點N(3,-6)(相切),此時直線與G無交點;第一個交點出現(xiàn)時,直線過點C(1+t,0),代入直線解析式:y=-4x+6+t,解得t=;最后一個交點是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.【詳解】(1)因為拋物線的頂點為M(-1,-2),所以對稱軸為x=-1,可得:,解得:a=,c=,所以拋物線解析式為y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);(2)①翻折后的解析式為y=-x2-x,與直線y=-4x+6聯(lián)立可得:x2-3x+=0,解得:x1=x2=3,所以該一元二次方程只有一個根,所以點N(3,-6)是唯一的交點;②≤t≤6.【點睛】本題主要考查了圖形運動,解本題的要點在于熟知一元二次方程的相關知識點.22、(1)見解析(2)見解析【解析】

(1)根據(jù)AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.【詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論