版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆上海市大團(tuán)中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.有3個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組的可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為A. B. C. D.2.對(duì)于不同的直線l、、及平面,下列命題中錯(cuò)誤的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.已知數(shù)列的通項(xiàng)公式,前項(xiàng)和為,則關(guān)于數(shù)列、的極限,下面判斷正確的是()A.?dāng)?shù)列的極限不存在,的極限存在B.?dāng)?shù)列的極限存在,的極限不存在C.?dāng)?shù)列、的極限均存在,但極限值不相等D.?dāng)?shù)列、的極限均存在,且極限值相等4.在中,,BC邊上的高等于,則A. B. C. D.5.函數(shù)的零點(diǎn)所在的一個(gè)區(qū)間是().A. B. C. D.6.下列函數(shù)中最小正周期為的是()A. B. C. D.7.已知等差數(shù)列的前項(xiàng)和為,若,則的值為A.10 B.15 C.25 D.308.已知圓柱的軸截面為正方形,且該圓柱的側(cè)面積為,則該圓柱的體積為A. B. C. D.9.在三棱柱中,底面,是正三角形,若,則該三棱柱外接球的表面積為()A. B. C. D.10.已知實(shí)數(shù)滿足,那么的最小值為(
)A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數(shù)列中,公差不為零,且、、恰好為某等比數(shù)列的前三項(xiàng),那么該等比數(shù)列公比的值等于____________.12.設(shè)是等差數(shù)列的前項(xiàng)和,若,,則公差(___).13.已知為的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量,.若,且,則B=14.無限循環(huán)小數(shù)化成最簡(jiǎn)分?jǐn)?shù)為________15.在中,,則______.16.已知向量滿足,則三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某“雙一流A類”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問卷調(diào)查,其中一項(xiàng)是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬(wàn)元到2.35萬(wàn)元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)分組,得到如下的頻率分布直方圖:(1)為感謝同學(xué)們對(duì)這項(xiàng)調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈(zèng)送一份禮品,并從這6人中再抽取2人,各贈(zèng)送某款智能手機(jī)1部,求獲贈(zèng)智能手機(jī)的2人月薪都不低于1.75萬(wàn)元的概率;(2)同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表.(i)求這100人月薪收入的樣本平均數(shù)x和樣本方差s2(ii)該校在某地區(qū)就業(yè)的本科畢業(yè)生共50人,決定于2019國(guó)慶長(zhǎng)假期間舉辦一次同學(xué)聯(lián)誼會(huì),并收取一定的活動(dòng)費(fèi)用,有兩種收費(fèi)方案:方案一:設(shè)Ω=[x-s-0.018,x+s+0.018),月薪落在區(qū)間Ω左側(cè)的每人收取400元,月薪落在區(qū)間方案二:按每人一個(gè)月薪水的3%收??;用該校就業(yè)部統(tǒng)計(jì)的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費(fèi)方案能收到更多的費(fèi)用?參考數(shù)據(jù):174≈13.218.已知數(shù)列滿足=(1)若求數(shù)列的通項(xiàng)公式;(2)若==對(duì)一切恒成立求實(shí)數(shù)取值范圍.19.已知公差不為零的等差數(shù)列的前項(xiàng)和為,,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和為,求.20.在等差數(shù)列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比數(shù)列{bn}的前三項(xiàng).(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)設(shè)cn=an·bn,求數(shù)列{cn}的前n項(xiàng)和Sn.21.已知直線:,一個(gè)圓的圓心在軸上且該圓與軸相切,該圓經(jīng)過點(diǎn).(1)求圓的方程;(2)求直線被圓截得的弦長(zhǎng).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】每個(gè)同學(xué)參加的情形都有3種,故兩個(gè)同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A2、C【解析】
由平面的基本性質(zhì)及其推論得:對(duì)于選項(xiàng)C,可能l∥n或l與n相交或l與n異面,即選項(xiàng)C錯(cuò)誤,得解.【詳解】由平行公理4可得選項(xiàng)A正確,由線面垂直的性質(zhì)可得選項(xiàng)B正確,由異面直線所成角的定義可得選項(xiàng)D正確,對(duì)于選項(xiàng)C,若l∥α,n∥α,則l∥n或l與n相交或l與n異面,即選項(xiàng)C錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了平面中線線、線面的關(guān)系及性質(zhì)定理與推論的應(yīng)用,屬簡(jiǎn)單題.3、D【解析】
分別考慮與的極限,然后作比較.【詳解】因?yàn)?,又,所以?shù)列、的極限均存在,且極限值相等,故選D.【點(diǎn)睛】本題考查數(shù)列的極限的是否存在的判斷以及計(jì)算,難度一般.注意求解的極限時(shí),若是分段數(shù)列求和的形式,一定要將多段數(shù)列均考慮到.4、D【解析】試題分析:設(shè)邊上的高線為,則,所以.由正弦定理,知,即,解得,故選D.【考點(diǎn)】正弦定理【方法點(diǎn)撥】在平面幾何圖形中求相關(guān)的幾何量時(shí),需尋找各個(gè)三角形之間的聯(lián)系,交叉使用公共條件,常常將所涉及到已知幾何量與所求幾何集中到某一個(gè)三角形,然后選用正弦定理與余弦定理求解.5、B【解析】
判斷函數(shù)的單調(diào)性,利用f(﹣1)與f(1)函數(shù)值的大小,通過零點(diǎn)存在性定理判斷即可【詳解】函數(shù)f(x)=2x+3x是增函數(shù),f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零點(diǎn)存在性定理可知:函數(shù)f(x)=2x+3x的零點(diǎn)所在的一個(gè)區(qū)間(﹣1,1).故選:B.【點(diǎn)睛】本題考查零點(diǎn)存在性定理的應(yīng)用,考查計(jì)算能力,注意函數(shù)的單調(diào)性的判斷.6、C【解析】
對(duì)A選項(xiàng),對(duì)賦值,即可判斷其最小正周期不是;利用三角函數(shù)的周期公式即可判斷B、D的最小正周期不是,問題得解.【詳解】對(duì)A選項(xiàng),令,則,不滿足,所以不是以為周期的函數(shù),其最小正周期不為;對(duì)B選項(xiàng),的最小正周期為:;對(duì)D選項(xiàng),的最小正周期為:;排除A、B、D故選C【點(diǎn)睛】本題主要考查了三角函數(shù)的周期公式及周期函數(shù)的定義,還考查了賦值法,屬于基礎(chǔ)題.7、B【解析】
直接利用等差數(shù)列的性質(zhì)求出結(jié)果.【詳解】等差數(shù)列{an}的前n項(xiàng)和為Sn,若S17=85,則:85,解得:a9=5,所以:a7+a9+a11=3a9=1.故選:B.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):等差數(shù)列的通項(xiàng)公式的應(yīng)用,及性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題.8、C【解析】
設(shè)圓柱的底面半徑,該圓柱的高為,利用側(cè)面積得到半徑,再計(jì)算體積.【詳解】設(shè)圓柱的底面半徑.因?yàn)閳A柱的軸截面為正方形,所以該圓柱的高為因?yàn)樵搱A柱的側(cè)面積為,所以,解得,故該圓柱的體積為.故答案選C【點(diǎn)睛】本題考查了圓柱的體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.9、C【解析】
設(shè)球心為,的中心為,求出與,利用勾股定理求出外接球的半徑,代入球的表面積公式即可.【詳解】設(shè)球心為,的中心為,則,,球的半徑,所以球的表面積為.故選:C【點(diǎn)睛】本題考查多面體外接球問題,球的表面積公式,屬于中檔題.10、A【解析】
表示直線上的點(diǎn)到原點(diǎn)的距離,利用點(diǎn)到直線的距離公式求得最小值.【詳解】依題意可知表示直線上的點(diǎn)到原點(diǎn)的距離,故原點(diǎn)到直線的距離為最小值,即最小值為,故選A.【點(diǎn)睛】本小題主要考查點(diǎn)到直線的距離公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】
由題意將表示為的方程組求解得,即可得等比數(shù)列的前三項(xiàng)分別為﹑、,則公比可求【詳解】由題意可知,,又因?yàn)?,,代入上式可得,所以該等比?shù)列的前三項(xiàng)分別為﹑、,所以.故答案為:4【點(diǎn)睛】本題考查等差等比數(shù)列的基本量計(jì)算,考查計(jì)算能力,是基礎(chǔ)題12、【解析】
根據(jù)兩個(gè)和的關(guān)系得到公差條件,解得結(jié)果.【詳解】由題意可知,,即,又,兩式相減得,.【點(diǎn)睛】本題考查等差數(shù)列和項(xiàng)的性質(zhì),考查基本分析求解能力,屬基礎(chǔ)題.13、【解析】
根據(jù)得,再利用正弦定理得,化簡(jiǎn)得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【詳解】根據(jù)題意,由正弦定理可得則所以答案為?!军c(diǎn)睛】本題主要考查向量與三角形正余弦定理的綜合應(yīng)用,屬于基礎(chǔ)題。14、【解析】
利用無窮等比數(shù)列求和的方法即可.【詳解】.故答案為:【點(diǎn)睛】本題主要考查了無窮等比數(shù)列的求和問題,屬于基礎(chǔ)題型.15、【解析】
由已知求得,進(jìn)一步求得,即可求出.【詳解】由,得,即,,則,,,則.【點(diǎn)睛】本題主要考查應(yīng)用兩角和的正切公式作三角函數(shù)的恒等變換與化簡(jiǎn)求值.16、【解析】試題分析:=,又,,代入可得8,所以考點(diǎn):向量的數(shù)量積運(yùn)算.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)23;(2)(i)2,0.0174【解析】
(1)根據(jù)頻率分布直方圖求出前2組中的人數(shù),由分層抽樣得抽取的人數(shù),然后把6人編號(hào),可寫出任取2人的所有組合,也可得出獲贈(zèng)智能手機(jī)的2人月薪都不低于1.75萬(wàn)元的所有組合,從而可計(jì)算出概率.(2)根據(jù)頻率分布直方圖計(jì)算出均值和方差,然后求出區(qū)間Ω,結(jié)合頻率分布直方圖可計(jì)算出兩方案收取的費(fèi)用.【詳解】(1)第一組有0.2×0.1×100=2人,第二組有1.0×0.1×100=10人.按照分層抽樣抽6人時(shí),第一組抽1人,記為A,第二組抽5人,記為B,C,D,E,F(xiàn).從這6人中抽2人共有15種:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).獲贈(zèng)智能手機(jī)的2人月薪都不低于1.75萬(wàn)元的10種:(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).于是獲贈(zèng)智能手機(jī)的2人月薪都超過1.75萬(wàn)元的概率P=10(2)(i)這100人月薪收入的樣本平均數(shù)x和樣本方差s2分別是s2(ii)方案一:s=月薪落在區(qū)間Ω左側(cè)收活動(dòng)費(fèi)用約為(0.02+0.10)×400×50÷10000=0.24(萬(wàn)元);月薪落在區(qū)間Ω收活動(dòng)費(fèi)用約為(0.24+0.31+0.20)×600×50÷10000=2.25(萬(wàn)元);月薪落在區(qū)間Ω右側(cè)收活動(dòng)費(fèi)用約為(0.09+0.04)×800×50÷10000=0.52(萬(wàn)元);、因此方案一,這50人共收活動(dòng)費(fèi)用約為3.01(萬(wàn)元).方案二:這50人共收活動(dòng)費(fèi)用約為50×0.03?x故方案一能收到更多的費(fèi)用.【點(diǎn)睛】本題考查頻率分布直方圖,考查分層抽樣,考查古典概型.屬于基礎(chǔ)題.這類問題在計(jì)算均值、方差時(shí)可用各組數(shù)據(jù)區(qū)間的中點(diǎn)處的值作為這組數(shù)據(jù)的估計(jì)值參與計(jì)算.18、(1)=;(2).【解析】
(1)由,結(jié)合可得數(shù)列為等差數(shù)列,進(jìn)而可得所求;(2)由得,利用累加法并結(jié)合等比數(shù)列的前項(xiàng)和公式求出,化簡(jiǎn)得,再利用數(shù)列的單調(diào)性求出的最大值即可得出結(jié)論.【詳解】(1)由,可得=.∴數(shù)列是首項(xiàng)為1,公差為4的等差數(shù)列,∴.(2)由及,得=,∴,∴,又滿足上式,∴.∵對(duì)一切恒成立,即對(duì)一切恒成立,∴對(duì)一切恒成立.又?jǐn)?shù)列為單調(diào)遞減數(shù)列,∴,∴,∴實(shí)數(shù)取值范圍為.【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式,考查了累加法與恒成立問題、邏輯推理能力與計(jì)算能力,解決數(shù)列中的恒成立問題時(shí),也常利用分離參數(shù)的方法,轉(zhuǎn)化為求最值的問題求解.19、(1);(2).【解析】試題分析:(1)利用等差等比基本公式,計(jì)算數(shù)列的通項(xiàng)公式;(2)利用裂項(xiàng)相消法求和.試題解析:(1)設(shè)公差為,因?yàn)?,,成等?shù)列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.20、(1)bn=3n-1;(2)Sn=(n-1)·3n+1【解析】
(1)由a1,a2,a5是等比數(shù)列{bn}的前三項(xiàng)得,a22=a1·a5?(a1+d)2=a1·(a1+4d)··?a12+2a1d+d2=a12+4a1d?d2=2a1d,又d≠0,所以d=2a1=2,從而an=a1+(n-1)d=2n-1,則b1=a1=1,b2=a2=3,則等比數(shù)列{bn}的公比q=3,從而bn=3n-1(2)由(1)得,cn=an·bn=(2n-1)·3n-1,則Sn=1·1+3·3+5·32+7·33+…+(2n-1)·3n-1①3Sn=1·3+3·32+5·33+…+(2n-3)·3n-1+(2n-1)·3n②①-②得,-2Sn=1·1+2·3+2·32+2·
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 音樂啟蒙班游戲課程設(shè)計(jì)
- 自然風(fēng)力游戲課程設(shè)計(jì)
- 運(yùn)動(dòng)副 課程設(shè)計(jì)
- 足球課程設(shè)計(jì)的思路
- 通信原理matlab實(shí)驗(yàn)課程設(shè)計(jì)
- 插齒機(jī)機(jī)械原理課程設(shè)計(jì)
- 送貨上門課程設(shè)計(jì)
- 郵件收發(fā)程序Java課程設(shè)計(jì)
- 裝配式建筑施工課程設(shè)計(jì)
- 物流會(huì)計(jì)做賬課程設(shè)計(jì)
- 新教材人教版高中物理選擇性必修第二冊(cè)全冊(cè)各章節(jié)課時(shí)練習(xí)題及章末測(cè)驗(yàn)含答案解析(安培力洛倫茲力電磁感應(yīng)交變電流等)
- 初級(jí)養(yǎng)老護(hù)理員培訓(xùn)全套
- 集中供熱管網(wǎng)系統(tǒng)一次網(wǎng)的調(diào)節(jié)方法
- GB/T 41095-2021機(jī)械振動(dòng)選擇適當(dāng)?shù)臋C(jī)器振動(dòng)標(biāo)準(zhǔn)的方法
- MRP、MPS計(jì)劃文檔教材
- 甲狀腺疾病護(hù)理查房課件
- 安全安全帶檢查記錄表
- GB∕T 26520-2021 工業(yè)氯化鈣-行業(yè)標(biāo)準(zhǔn)
- 2022年浙江省紹興市中考數(shù)學(xué)試題及參考答案
- Listen-to-this-3-英語(yǔ)高級(jí)聽力-(整理版)
- 生活垃圾焚燒處理建設(shè)項(xiàng)目評(píng)價(jià)導(dǎo)則(2022)
評(píng)論
0/150
提交評(píng)論