




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
福建省泉州市2024年高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為比較甲、乙兩名籃球運動員的近期競技狀態(tài),選取這兩名球員最近五場比賽的得分制成如圖所示的莖葉圖,有以下結(jié)論:①甲最近五場比賽得分的中位數(shù)高于乙最近五場比賽得分的中位數(shù);②甲最近五場比賽得分平均數(shù)低于乙最近五場比賽得分的平均數(shù);③從最近五場比賽的得分看,乙比甲更穩(wěn)定;④從最近五場比賽的得分看,甲比乙更穩(wěn)定.其中所有正確結(jié)論的編號為:()A.①③ B.①④ C.②③ D.②④2.已知集合,對于滿足集合A的所有實數(shù)t,使不等式恒成立的x的取值范圍為A. B.C. D.3.在正方體中,與棱異面的棱有()A.8條 B.6條 C.4條 D.2條4.若,則()A.0 B.-1 C.1或0 D.0或-15.已知直線的傾斜角為,則()A. B. C. D.6.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.“至少有1個白球”和“都是紅球”B.“至少有2個白球”和“至多有1個紅球”C.“恰有1個白球”和“恰有2個白球”D.“至多有1個白球”和“都是紅球”7.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為5的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲1000個點,己知恰有400個點落在陰影部分,據(jù)此可估計陰影部分的面積是A.2 B.3 C.10 D.158.函數(shù),當(dāng)上恰好取得5個最大值,則實數(shù)的取值范圍為()A. B. C. D.9.設(shè)函數(shù),則()A.2 B.4 C.8 D.1610.的展開式中含的項的系數(shù)為()A.-1560 B.-600 C.600 D.1560二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足,當(dāng)時,,則是否存在不小于2的正整數(shù),使成立?若存在,則在橫線處直接填寫的值;若不存在,就填寫“不存在”_______.12.已知{}是等差數(shù)列,是它的前項和,且,則____.13.已有無窮等比數(shù)列的各項的和為1,則的取值范圍為__________.14.如圖是一個算法流程圖.若輸出的值為4,則輸入的值為______________.15.已知正數(shù)、滿足,則的最小值是________.16.等比數(shù)列的首項為,公比為q,,則首項的取值范圍是____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明:;(2)求三棱錐的體積.18.在直角中,,延長至點D,使得,連接.(1)若,求的值;(2)求角D的最大值.19.年月日是第二十七屆“世界水日”,月日是第三十二屆“中國水周”.我國紀(jì)念年“世界水日”和“中國水周”活動的宣傳主題為“堅持節(jié)水優(yōu)先,強化水資源管理”.某中學(xué)課題小組抽取、兩個小區(qū)各戶家庭,記錄他們月份的用水量(單位:)如下表:小區(qū)家庭月用水量小區(qū)家庭月用水量(1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖,從莖葉圖看,哪個小區(qū)居民節(jié)水意識更好?(2)從用水量不少于的家庭中,、兩個小區(qū)各隨機抽取一戶,求小區(qū)家庭的用水量低于小區(qū)的概率.20.已知的內(nèi)角A,B,C所對的邊分別為a,b,c,且.(1)若,求的值;(2)若,求b,c的值.21.如圖,在三棱錐中,,分別為棱,上的三等份點,,.(1)求證:平面;(2)若,平面,求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)中位數(shù),平均數(shù),方差的概念計算比較可得.【詳解】甲的中位數(shù)為29,乙的中位數(shù)為30,故①不正確;甲的平均數(shù)為29,乙的平均數(shù)為30,故②正確;從比分來看,乙的高分集中度比甲的高分集中度高,故③正確,④不正確.故選C.【點睛】本題考查了莖葉圖,屬基礎(chǔ)題.平均數(shù)即為幾個數(shù)加到一起除以數(shù)據(jù)的個數(shù)得到的結(jié)果.2、B【解析】
由條件求出t的范圍,不等式變形為恒成立,即不等式恒成立,再由不等式的左邊兩個因式同為正或同為負(fù)處理.【詳解】由得,,
不等式恒成立,即不等式恒成立,即不等式恒成立,
只需或恒成立,
只需或恒成立,
只需或即可.
故選:B.【點睛】本題考查了一元二次不等式的解法問題,難度較大,充分利用恒成立的思想解題是關(guān)鍵.3、C【解析】
在正方體12條棱中,找到與平行的、相交的棱,然后計算出與棱異面的棱的條數(shù).【詳解】正方體共有12條棱,其中與平行的有共3條,與與相交的有共4條,因此棱異面的棱有條,故本題選C.【點睛】本題考查了直線與直線的位置關(guān)系,考查了異面直線的判斷.4、D【解析】
由二倍角公式可得,即,從而分情況求解.【詳解】易得,或.
由得.
由,得.故選:D【點睛】本題考查二倍角公式的應(yīng)用以及有關(guān)的二次齊次式子求值,屬于中檔題.5、B【解析】
根據(jù)直線斜率與傾斜角的關(guān)系求解即可.【詳解】因為直線的傾斜角為,故直線斜率.故選:B【點睛】本題主要考查了直線的傾斜角與斜率的關(guān)系,屬于基礎(chǔ)題.6、C【解析】
結(jié)合互斥事件與對立事件的概念,對選項逐個分析可選出答案.【詳解】對于選項A,“至少有1個白球”和“都是紅球”是對立事件,不符合題意;對于選項B,“至少有2個白球”表示取出2個球都是白色的,而“至多有1個紅球”表示取出的球1個紅球1個白球,或者2個都是白球,二者不是互斥事件,不符合題意;對于選項C,“恰有1個白球”表示取出2個球1個紅球1個白球,與“恰有2個白球”是互斥而不對立的兩個事件,符合題意;對于選項D,“至多有1個白球”表示取出的2個球1個紅球1個白球,或者2個都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【點睛】本題考查了互斥事件和對立事件的定義的運用,考查了學(xué)生對知識的理解和掌握,屬于基礎(chǔ)題.7、C【解析】
根據(jù)古典概型概率公式以及幾何概型概率公式分別計算概率,解方程可得結(jié)果.【詳解】設(shè)陰影部分的面積是s,由題意得4001000【點睛】(1)當(dāng)試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時,關(guān)鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域.8、C【解析】
先求出取最大值時的所有的解,再解不等式,由解的個數(shù)決定出的取值范圍.【詳解】設(shè),所以,解得,所以滿足的值恰好只有5個,所以的取值可能為0,1,2,3,4,由,故選C.【點睛】本題主要考查正弦函數(shù)的最值以及不等式的解法,意在考查學(xué)生的數(shù)學(xué)運算能力.9、B【解析】
根據(jù)分段函數(shù)定義域,代入可求得,根據(jù)的值再代入即可求得的值.【詳解】因為所以所以所以選B【點睛】本題考查了根據(jù)定義域求分段函數(shù)的值,依次代入即可,屬于基礎(chǔ)題.10、A【解析】的項可以由或的乘積得到,所以含的項的系數(shù)為,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、70【解析】
構(gòu)造數(shù)列,兩式與相減可得數(shù)列{}為等差數(shù)列,求出,讓=0即可求出.【詳解】設(shè)兩式相減得又?jǐn)?shù)列從第5項開始為等差數(shù)列,由已知易得均不為0所以當(dāng)n=70的時候成立,故答案填70.【點睛】如果遞推式中出現(xiàn)和的形式,比如,可以嘗試退項相減,即讓取后,兩式作差,和的部分因為相減而抵消,剩下的就好算了。12、【解析】
根據(jù)等差數(shù)列的性質(zhì)得,由此得解.【詳解】解:由題意可知,;同理。故.故答案為:【點睛】本題考查了等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.13、【解析】
根據(jù)無窮等比數(shù)列的各項和表達式,將用公比表示,根據(jù)的范圍求解的范圍.【詳解】因為且,又,且,則.【點睛】本題考查無窮等比數(shù)列各項和的應(yīng)用,難度一般.關(guān)鍵是將待求量與公比之間的關(guān)系找到,然后根據(jù)的取值范圍解決問題.14、-1【解析】
對的范圍分類,利用流程圖列方程即可得解.【詳解】當(dāng)時,由流程圖得:令,解得:,滿足題意.當(dāng)時,由流程圖得:令,解得:,不滿足題意.故輸入的值為:【點睛】本題主要考查了流程圖知識,考查分類思想及方程思想,屬于基礎(chǔ)題.15、.【解析】
利用等式得,將代數(shù)式與代數(shù)式相乘,利用基本不等式求出的最小值,由此可得出的最小值.【詳解】,所以,由基本不等式可得,當(dāng)且僅當(dāng)時,等號成立,因此,的最小值是,故答案為:.【點睛】本題考查利用基本不等式求最值,解題時要對代數(shù)式進行合理配湊,考查分析問題和解決問題的能力,屬于中等題.16、【解析】
由題得,利用即可得解【詳解】由題意知,,可得,又因為,所以可求得.故答案為:【點睛】本題考查了等比數(shù)列的通項公式其前n項和公式、數(shù)列極限的運算法則,考查了推理能力與計算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)以A為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,求出BE,DC的方向向量,根據(jù)?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【詳解】(1)∵底面,,以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,∵,,點為棱的中點.∴(1,0,0),(2,2,0),(0,2,0),(0,0,2),(1,1,1)∴=(0,1,1),=(2,0,0),∵?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【點睛】本題考查了空間線面垂直的判定,利用了向量法,也考查了等體積法求體積,屬于中檔題.18、(1);(2).【解析】
(1)在中,由正弦定理得,,再結(jié)合在直角中,,然后求解即可;(2)由正弦定理及兩角和的余弦可得,然后結(jié)合三角函數(shù)的有界性求解即可.【詳解】解:(1)設(shè),在中,由正弦定理得,,而在直角中,,所以,因為,所以,又因為,所以,所以,所以;(2)設(shè),在中,由正弦定理得,,而在直角中,,所以,因為,所以,即,即,根據(jù)三角函數(shù)有界性得,及,解得,所以角D的最大值為.【點睛】本題考查了正弦定理,重點考查了三角函數(shù)的有界性,屬中檔題.19、(1)見解析(2)【解析】
(1)根據(jù)表格中的數(shù)據(jù)繪制出莖葉圖,并結(jié)合莖葉圖中數(shù)據(jù)的分布可比較出兩個小區(qū)居民節(jié)水意識;(2)列舉出所有的基本事件,確定所有的基本事件數(shù),然后確定事件“小區(qū)家庭的用水量低于小區(qū)”所包含的基本事件數(shù),利用古典概型的概率公式可計算出事件“小區(qū)家庭的用水量低于小區(qū)”的概率.【詳解】(1)繪制如下莖葉圖:由以上莖葉圖可以看出,小區(qū)月用水量有的葉集中在莖、上,而小區(qū)月用水量有的葉集中在莖、上,由此可看出小區(qū)居民節(jié)水意識更好;(2)從用水量不少于的家庭中,、兩個小區(qū)各隨機抽取一戶的結(jié)果:、、、、、、、,共個基本事件,小區(qū)家庭的用水量低于小區(qū)的的結(jié)果:、、,共個基本事件.所以,小區(qū)家庭的用水量低于小區(qū)的概率是.【點睛】本題考查莖葉圖的繪制與應(yīng)用,以及利用古典概型計算事件的概率,考查收集數(shù)據(jù)與處理數(shù)據(jù)的能力,考查計算能力,屬于中等題.20、(1);(2)【解析】
(1)先求出,再利用正弦定理可得結(jié)果;(2)由求出,再利用余弦定理解三角形.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東省濟南市萊蕪區(qū)中考一模地理試卷(原卷版+解析版)
- 外研版五年級上冊英語課外拓展計劃
- 吉安市井岡山大學(xué)后勤保障處招聘筆試真題2024
- 湘教版八年級數(shù)學(xué)家校聯(lián)動計劃
- 銀行零售風(fēng)險控制工作計劃
- 醫(yī)療軟件研發(fā)部職責(zé)與挑戰(zhàn)
- 熱力公司2025年市場擴展計劃
- 重癥監(jiān)護室插胃管操作流程
- 2025年部編版一年級美術(shù)教學(xué)工作計劃
- 德育與學(xué)科融合教學(xué)計劃
- GB 31825-2024制漿造紙單位產(chǎn)品能源消耗限額
- Q-SY 05601-2019 油氣管道投產(chǎn)前檢查規(guī)范
- 《金屬非金屬地下礦山通信聯(lián)絡(luò)系統(tǒng)建設(shè)規(guī)范》
- 淺析船體分段焊接檢驗
- 醫(yī)?;鸨O(jiān)管培訓(xùn)課件
- 2024高考復(fù)習(xí)必背英語詞匯3500單詞
- 3課 《赤壁賦》公開課一等獎創(chuàng)新教學(xué)設(shè)計【中職專用】高一語文高教版2023-2024-基礎(chǔ)模塊下冊
- 第5章 層次分析法課件
- 情感糾紛案件調(diào)解協(xié)議書
- 咯血護理疑難病例討論
- 《車間主任培訓(xùn)》課件
評論
0/150
提交評論