2024屆福建省龍巖一中數(shù)學(xué)高一下期末調(diào)研試題含解析_第1頁
2024屆福建省龍巖一中數(shù)學(xué)高一下期末調(diào)研試題含解析_第2頁
2024屆福建省龍巖一中數(shù)學(xué)高一下期末調(diào)研試題含解析_第3頁
2024屆福建省龍巖一中數(shù)學(xué)高一下期末調(diào)研試題含解析_第4頁
2024屆福建省龍巖一中數(shù)學(xué)高一下期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆福建省龍巖一中數(shù)學(xué)高一下期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.2.給出下列命題:(1)存在實數(shù)使.(2)直線是函數(shù)圖象的一條對稱軸.(3)的值域是.(4)若都是第一象限角,且,則.其中正確命題的題號為()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)3.圓的半徑是,則的圓心角與圓弧圍成的扇形面積是()A. B. C. D.4.如圖2所示,程序框圖的輸出結(jié)果是()A.3 B.4 C.5 D.85.函數(shù)(,)的部分圖象如圖所示,則的值分別是()A. B. C. D.6.已知某運動員每次投籃命中的概率都為40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為()A.0.35 B.0.25 C.0.20 D.0.157.在中,分別為角的對邊),則的形狀是()A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形8.設(shè)有直線和平面,則下列四個命題中,正確的是()A.若m∥α,n∥α,則m∥n B.若m?α,n?α,m∥β,l∥β,則α∥βC.若α⊥β,m?α,則m⊥β D.若α⊥β,m⊥β,m?α,則m∥α9.在等差數(shù)列中,如果,則數(shù)列前9項的和為()A.297 B.144 C.99 D.6610.已知Sn是等差數(shù)列{an}的前n項和,a2+a4+a6=12,則S7=()A.20 B.28 C.36 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.方程在上的解集為______.12.若,,則的值為______.13.設(shè)α,β是兩個不同的平面,l,m是兩條不同的直線,且l?α,m?β,下列四個命題正確的是________.①若l⊥β,則α⊥β;②若α⊥β,則l⊥m;③若l∥β,則α∥β;④若α∥β,則l∥m.14.已知等比數(shù)列的公比為,它的前項積為,且滿足,,,給出以下四個命題:①;②;③為的最大值;④使成立的最大的正整數(shù)為4031;則其中正確命題的序號為________15.已知,向量的夾角為,則的最大值為_____.16.已知數(shù)列,若對任意正整數(shù)都有,則正整數(shù)______;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,某快遞小哥從地出發(fā),沿小路以平均速度為20公里小時送快件到處,已知公里,,是等腰三角形,.(1)試問,快遞小哥能否在50分鐘內(nèi)將快件送到處?(2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車的平均速度為60公里小時,問,汽車能否先到達處?18.已知向量,,.(1)若,求的值;(2)設(shè),若恒成立,求的取值范圍.19.已知向量,.(1)若,在集合中取值,求滿足的概率;(2)若,在區(qū)間內(nèi)取值,求滿足的概率.20.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)求函數(shù),的單調(diào)遞減區(qū)間.21.求經(jīng)過點且分別滿足下列條件的直線的一般式方程.(1)傾斜角為45°;(2)在軸上的截距為5;(3)在第二象限與坐標(biāo)軸圍成的三角形面積為4.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由題意利用兩角和的余弦公式化簡函數(shù)的解析式,再利用余弦函數(shù)的單調(diào)性,得出結(jié)論.【詳解】函數(shù),令,求得,可得函數(shù)的增區(qū)間為,,.再根據(jù),,可得增區(qū)間為,,故選.【點睛】本題主要考查兩角和的余弦公式的應(yīng)用,考查余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.2、C【解析】

(1)化簡求值域進行判斷;(2)根據(jù)函數(shù)的對稱性可判斷;(3)根據(jù)余弦函數(shù)的圖像性質(zhì)可判斷;(4)利用三角函數(shù)線可進行判斷.【詳解】解:(1),(1)錯誤;(2)是函數(shù)圖象的一個對稱中心,(2)錯誤;(3)根據(jù)余弦函數(shù)的性質(zhì)可得的最大值為,,其值域是,(3)正確;(4)若都是第一象限角,且,利用三角函數(shù)線有,(4)正確.故選.【點睛】本題考查正弦函數(shù)與余弦函數(shù)、正切函數(shù)的性質(zhì),以及三角函數(shù)線定義,著重考查學(xué)生綜合運用三角函數(shù)的性質(zhì)分析問題、解決問題的能力,屬于中檔題.3、C【解析】

先將化為弧度數(shù),再利用扇形面積計算公式即可得出.【詳解】所以扇形的面積為:故選:C【點睛】題考查了扇形面積計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.4、B【解析】

由框圖可知,①,滿足條件,則;②,滿足條件,則;③,滿足條件,則;④,不滿足條件,輸出;故選B5、A【解析】

利用,求出,再利用,求出即可【詳解】,,,則有,代入得,則有,,,又,故答案選A【點睛】本題考查三角函數(shù)的圖像問題,依次求出和即可,屬于簡單題6、B【解析】

已知三次投籃共有20種,再得到恰有兩次命中的事件的種數(shù),然后利用古典概型的概率公式求解.【詳解】三次投籃共有20種,恰有兩次命中的事件有:191,271,932,812,393,有5種∴該運動員三次投籃恰有兩次命中的概率為故選:B【點睛】本題主要考古典概型的概率求法,還考查了運算求解的能力,屬于基礎(chǔ)題.7、A【解析】

根據(jù)正弦定理得到,化簡得到,得到,得到答案.【詳解】,則,即,即,,故,.故選:.【點睛】本題考查了正弦定理判斷三角形形狀,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.8、D【解析】

在A中,m與n相交、平行或異面;在B中,α與β相交或平行;在C中,m⊥β或m∥β或m與β相交;在D中,由直線與平面垂直的性質(zhì)與判定定理可得m∥α.【詳解】由直線m、n,和平面α、β,知:對于A,若m∥α,n∥α,則m與n相交、平行或異面,故A錯誤;對于B,若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交,故B錯誤;對于中,若α⊥β,α⊥β,m?α,則m⊥β或m∥β或m與β相交,故C錯誤;對于D,若α⊥β,m⊥β,m?α,則由直線與平面垂直的性質(zhì)與判定定理得m∥α,故D正確.故選D.【點睛】本題考查了命題真假的判斷問題,考查了空間線線、線面、面面的位置關(guān)系的判定定理及推論的應(yīng)用,體現(xiàn)符號語言與圖形語言的相互轉(zhuǎn)化,是中檔題.9、C【解析】試題分析:,,∴a4=13,a6=9,S9==99考點:等差數(shù)列性質(zhì)及前n項和點評:本題考查了等差數(shù)列性質(zhì)及前n項和,掌握相關(guān)公式及性質(zhì)是解題的關(guān)鍵.10、B【解析】

由等差數(shù)列的性質(zhì)計算.【詳解】由題意,,∴.故選B.【點睛】本題考查等差數(shù)列的性質(zhì),靈活運用等差數(shù)列的性質(zhì)可以很快速地求解等差數(shù)列的問題.在等差數(shù)列中,正整數(shù)滿足,則,特別地若,則;.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由求出的取值范圍,由可得出的值,從而可得出方程在上的解集.【詳解】,,由,得.,解得,因此,方程在上的解集為.故答案為:.【點睛】本題考查正切方程的求解,解題時要求出角的取值范圍,考查計算能力,屬于基礎(chǔ)題.12、【解析】

求出,將展開即可得解.【詳解】因為,,所以,所以.【點睛】本題主要考查了三角恒等式及兩角和的正弦公式,考查計算能力,屬于基礎(chǔ)題.13、①【解析】

由線面的平行垂直的判定和性質(zhì)一一檢驗即可得解.【詳解】由平面與平面垂直的判定可知,①正確;②中,當(dāng)α⊥β時,l,m可以垂直,也可以平行,也可以異面;③中,l∥β時,α,β可以相交;④中,α∥β時,l,m也可以異面.故答案為①.【點睛】本題主要考查了線面、面面的垂直和平行位置關(guān)系的判定和性質(zhì),屬于基礎(chǔ)題.14、②③【解析】

利用等比數(shù)列的性質(zhì),可得,得出,進而判斷②③④,即可得到答案.【詳解】①中,由等比數(shù)列的公比為,且滿足,,,可得,所以,且所以是錯誤的;②中,由等比數(shù)列的性質(zhì),可得,所以是正確的;③中,由,且,,所以前項之積的最大值為,所以是正確的;④中,,所以正確.綜上可得,正確命題的序號為②③.故答案為:②③.【點睛】本題主要考查了等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟記等比數(shù)列的性質(zhì),合理推算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.15、【解析】

將兩邊平方,化簡后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡得,由基本不等式得,故,即,即,所以的最大值為.【點睛】本小題主要考查平面向量模的運算,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.16、9【解析】

分析數(shù)列的單調(diào)性,以及數(shù)列各項的取值正負,得到數(shù)列中的最大項,由此即可求解出的值.【詳解】因為,所以時,,時,,又因為在上遞增,在也是遞增的,所以,又因為對任意正整數(shù)都有,所以.故答案為:.【點睛】本題考查數(shù)列的單調(diào)性以及數(shù)列中項的正負判斷,難度一般.處理數(shù)列單調(diào)性或者最值的問題時,可以采取函數(shù)的思想來解決問題,但是要注意到數(shù)列對應(yīng)的函數(shù)的定義域為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)快遞小哥不能在50分鐘內(nèi)將快件送到處.(2)汽車能先到達處.【解析】試題分析:(1)由題意結(jié)合圖形,根據(jù)正弦定理可得,,求得的長,又,可求出快遞小哥從地到地的路程,再計算小哥到達地的時間,從而問題可得解;(2)由題意,可根據(jù)余弦定理分別算出與的長,計算汽車行馳的路程,從而求出汽車到達地所用的時間,計算其與步小哥所用時間相差是否有15分鐘,從而問題可得解.試題解析:(1)(公里),中,由,得(公里)于是,由知,快遞小哥不能在50分鐘內(nèi)將快件送到處.(2)在中,由,得(公里),在中,,由,得(公里),-由(分鐘)知,汽車能先到達處.點睛:此題主要考查了解三角形中正弦定理、余弦定理在實際生活中的應(yīng)用,以及關(guān)于路程問題的求解運算等方面的知識與技能,屬于中低檔題型,也是??碱}型.在此類問題中,總是正弦定理、余弦定理,以及相關(guān)聯(lián)的三角函數(shù)的知識,所以根據(jù)題目條件、圖形進行挖掘,找到與問題銜接處,從而尋找到問題的解決方案.18、(1);(2).【解析】

(1)由,轉(zhuǎn)化為,利用弦化切的思想得出的值,從而求出的值;(2)由,轉(zhuǎn)化為,然后利用平面向量數(shù)量積的坐標(biāo)運算律和輔助角公式與函數(shù)的解析式進行化簡,并求出在區(qū)間的最大值,即可得出實數(shù)的取值范圍.【詳解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,當(dāng)時,,取得最大值:,又恒成立,即,故.【點睛】本題考查平面向量數(shù)量積的坐標(biāo)運算,考查三角函數(shù)的最值,在求解含參函數(shù)的不等式恒成立問題,可以利用參變量分離法,轉(zhuǎn)化為函數(shù)的最值來求解,考查轉(zhuǎn)化與化歸數(shù)學(xué)思想,考查計算能力,屬于中等題.19、(1)(2)【解析】

(1)首先求出包含的基本事件個數(shù),由,由向量的坐標(biāo)運算可得,列出滿足條件的基本事件個數(shù),根據(jù)古典概型概率計算公式即可求解.(2)根據(jù)題意全部基本事件的結(jié)果為,滿足的基本事件的結(jié)果為,利用幾何概型概率計算公式即可求解.【詳解】(1),的所有取值共有個基本事件.由,得,滿足包含的基本事件為,,,,,共種情形,故.(2)若,在上取值,則全部基本事件的結(jié)果為,滿足的基本事件的結(jié)果為.畫出圖形如圖,正方形的面積為,陰影部分的面積為,故滿足的概率為.【點睛】本題考查了古典概型概率計算公式、幾何概型概率計算公式,屬于基礎(chǔ)題.20、(1);(2).【解析】

(1)利用余弦函數(shù)的單調(diào)性列出不等式直接求的單調(diào)遞增區(qū)間.(2)利用正弦函數(shù)的單調(diào)遞減區(qū)間,直接求解,的單調(diào)遞減區(qū)間.【詳解】解:(1)由,,可得,,函數(shù)的單調(diào)遞增區(qū)間:,.(2)因為,;可得,.時,.函數(shù),的單調(diào)遞減區(qū)間:.【點睛】本題考查三角函數(shù)的單調(diào)性的求法,考查學(xué)生的計算能力,屬于基礎(chǔ)題.21、(1)(2)(3)【解析】

(1)利用斜率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論