版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆山東省濟南市名校高一下數(shù)學(xué)期末達標檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)為兩條不同的直線,為三個不重合平面,則下列結(jié)論正確的是()A.若,,則 B.若,則C.若,,則 D.若,,則2.把函數(shù),圖象上所有的點向右平行移動個單位長度,橫坐標伸長到原來的2倍,所得圖象對應(yīng)的函數(shù)為()A. B.C. D.3.若等差數(shù)列和的公差均為,則下列數(shù)列中不為等差數(shù)列的是()A.(為常數(shù)) B.C. D.4.如圖,在平行四邊形中,下列結(jié)論中錯誤的是()A. B. C. D.5.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是A. B. C. D.6.已知集合,,則()A. B. C. D.7.設(shè),滿足約束條件,則目標函數(shù)的最大值是()A.3 B. C.1 D.8.若直線與圓相切,則的值為A.1 B. C. D.9.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.5 B.8 C.13 D.2110.在△ABC中,角A、B、C所對的邊分別為,己知A=60°,,則B=()A.45° B.135° C.45°或135° D.以上都不對二、填空題:本大題共6小題,每小題5分,共30分。11.已知點是所在平面內(nèi)的一點,若,則__________.12.等差數(shù)列滿足,則其公差為__________.13.設(shè)等比數(shù)列的首項為,公比為,所有項和為1,則首項的取值范圍是____________.14.已知一圓臺的底面圓的半徑分別為2和5,母線長為5,則圓臺的高為_______.15.已知等比數(shù)列中,,,則該等比數(shù)列的公比的值是______.16.已知圓錐的母線長為1,側(cè)面展開圖的圓心角為,則該圓錐的體積是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,,其中為坐標原點.(1)若,求向量與的夾角;(2)若對任意實數(shù)都成立,求實數(shù)的取值范圍.18.中,D是邊BC上的點,滿足,,.(1)求;(2)若,求BD的長.19.求函數(shù)的單調(diào)遞增區(qū)間.20.如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點.(1)證明:;(2)若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值.21.已知直線,.(1)證明:直線過定點;(2)已知直線//,為坐標原點,為直線上的兩個動點,,若的面積為,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)空間中線線、線面、面面位置關(guān)系,逐項判斷,即可得出結(jié)果.【詳解】A選項,若,,則可能平行、相交或異面;故A錯;B選項,若,,則或,故B錯;C選項,若,,因為為三個不重合平面,所以或,故C錯;D選項,若,,則,故D正確;故選D【點睛】本主要考查命題真假的判定,熟記空間中線線、線面、面面位置關(guān)系,即可得出結(jié)果.2、C【解析】
利用二倍角的余弦公式以及輔助角公式將函數(shù)化為的形式,然后再利用三角函數(shù)的圖像變換即可求解.【詳解】函數(shù),函數(shù)圖象上所有的點向右平行移動個單位長度可得,在將橫坐標伸長到原來的2倍,可得.故選:C【點睛】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的圖像平移伸縮變換,需熟記公式,屬于基礎(chǔ)題.3、D【解析】
利用等差數(shù)列的定義對選項逐一進行判斷,可得出正確的選項.【詳解】數(shù)列和是公差均為的等差數(shù)列,則,,.對于A選項,,數(shù)列(為常數(shù))是等差數(shù)列;對于B選項,,數(shù)列是等差數(shù)列;對于C選項,,所以,數(shù)列是等差數(shù)列;對于D選項,,不是常數(shù),所以,數(shù)列不是等差數(shù)列.故選:D.【點睛】本題考查等差數(shù)列的定義和通項公式,注意等差數(shù)列定義的應(yīng)用,考查推理能力,屬于中等題.4、C【解析】
根據(jù)向量的定義及運算法則一一分析選項正誤即可.【詳解】在平行四邊形中,顯然有,,故A,D正確;根據(jù)向量的平行四邊形法則,可知,故B正確;根據(jù)向量的三角形法,,故C錯誤;故選:C.【點睛】本題考查平面向量的基本定義和運算法則,屬于基礎(chǔ)題.5、A【解析】分析:先求出A,B兩點坐標得到再計算圓心到直線距離,得到點P到直線距離范圍,由面積公式計算即可詳解:直線分別與軸,軸交于,兩點,則點P在圓上圓心為(2,0),則圓心到直線距離故點P到直線的距離的范圍為則故答案選A.點睛:本題主要考查直線與圓,考查了點到直線的距離公式,三角形的面積公式,屬于中檔題.6、D【解析】依題意,故.7、C【解析】
作出不等式組對應(yīng)的平面區(qū)域,結(jié)合圖形找出最優(yōu)解,從而求出目標函數(shù)的最大值.【詳解】作出不等式組對應(yīng)的平面區(qū)域,如陰影部分所示;平移直線,由圖像可知當(dāng)直線經(jīng)過點時,最大.,解得,即,所以的最大值為1.故答案為選C【點睛】本題給出二元一次不等式組,求目標函數(shù)的最大值,著重考查二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃,也考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.8、D【解析】圓的圓心坐標為,半徑為1,∵直線與圓相切,∴圓心到直線的距離,即,解得,故選D.9、C【解析】
通過程序一步步分析得到結(jié)果,從而得到輸出結(jié)果.【詳解】開始:,執(zhí)行程序:;;;;,執(zhí)行“否”,輸出的值為13,故選C.【點睛】本題主要考查算法框圖的輸出結(jié)果,意在考查學(xué)生的分析能力及計算能力,難度不大.10、A【解析】
利用正弦定理求出的值,再結(jié)合,得出,從而可得出的值?!驹斀狻坑烧叶ɡ淼?,,,則,所以,,故選:A。【點睛】本題考查利用正弦定理解三角形,要注意正弦定理所適用的基本情形,同時在求得角時,利用大邊對大角定理或兩角之和不超過得出合適的答案,考查計算能力,屬于中等題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè)為的中點,為的中點,為的中點,由得到,再進一步分析即得解.【詳解】如圖,設(shè)為的中點,為的中點,為的中點,因為,所以可得,整理得.又,所以,所以,又,所以.故答案為【點睛】本題主要考查向量的運算法則和共線向量,意在考查學(xué)生對這些知識的理解掌握水平,解答本題的關(guān)鍵是作輔助線,屬于中檔題.12、【解析】
首先根據(jù)等差數(shù)列的性質(zhì)得到,再根據(jù)即可得到公差的值.【詳解】,解得.,所以.故答案為:【點睛】本題主要考查等差數(shù)列的性質(zhì),熟記公式為解題的關(guān)鍵,屬于簡單題.13、【解析】
由題意可得得且,可得首項的取值范圍.【詳解】解:由題意得:,,故答案為:.【點睛】本題主要考查等比數(shù)列前n項的和、數(shù)列極限的運算,屬于中檔題.14、4【解析】
根據(jù)圓臺軸截面等腰梯形計算.【詳解】,設(shè)圓高為,由圓臺軸截面是等腰梯形得:,即,,故答案為:4.【點睛】本題考查求圓臺的高,解題關(guān)鍵是掌握圓臺的性質(zhì),圓臺軸截面是等腰梯形.15、【解析】
根據(jù)等比通項公式即可求解【詳解】故答案為:【點睛】本題考查等比數(shù)列公比的求解,屬于基礎(chǔ)題16、【解析】
根據(jù)題意得,解得,求得圓錐的高,利用體積公式,即可求解.【詳解】設(shè)圓錐底面的半徑為,根據(jù)題意得,解得,所以圓錐的高,所以圓錐的體積.【點睛】本題主要考查了圓錐的體積的計算,以及圓錐的側(cè)面展開圖的應(yīng)用,其中解答中根據(jù)圓錐的側(cè)面展開圖,求得圓錐的底面圓的半徑是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)或.【解析】
(1)按向量數(shù)量積的定義先求夾角余弦,再求得夾角;(2)不等式化為恒成立,令取1和-1代入解不等式組即可得.【詳解】(1)由題意,,記向量與的夾角為,又,則,當(dāng)時,,,當(dāng)時,,.(2),由得,∵,∴,∴,解得或.【點睛】本題考查向量模與夾角,考查不等式恒成立問題,不等式中把作為一個整體,它是關(guān)于的一次不等式,因此要使它恒成立,只要取1和-1時均成立即可.18、(1)(2)【解析】
(1)由中,D是邊BC上的點,根據(jù)面積關(guān)系求得,再結(jié)合正弦定理,即可求解.(2)由,化簡得到,再結(jié)合,解得,進而利用勾股定理求得的長.【詳解】(1)由題意,在中,D是邊BC上的點,可得,所以又由正弦定理,可得.(2)由,可得,所以,即,由(1)知,解得,又由,所以.【點睛】本題主要考查了三角形的正弦定理和三角形的面積公式的應(yīng)用,其中解答中熟記解三角形的正弦定理,以及熟練應(yīng)用三角的面積關(guān)系,列出方程求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.19、()【解析】
先化簡函數(shù)得到,再利用復(fù)合函數(shù)單調(diào)性原則結(jié)合整體法求單調(diào)區(qū)間即可.【詳解】,令,則,因為是的一次函數(shù),且在定義域上單調(diào)遞增,所以要求的單調(diào)遞增區(qū)間,即求的單調(diào)遞減區(qū)間,即(),∴(),即(),∴函數(shù)的單調(diào)遞增區(qū)間為().【點睛】本題考查求復(fù)合型三角函數(shù)的單調(diào)區(qū)間,答題時注意,復(fù)合函數(shù)的單調(diào)性遵循“同增異減”法則.20、(1)見解析;(2)【解析】
(1)證明,利用平面即可證得,問題得證.(2)過點作于點,過點作于點,連接.當(dāng)與垂直時,與平面所成最大角,利用該最大角的正切值為即可求得,證明就是二面角的一個平面角,解即可.【詳解】(1)因為底面為菱形,所以為等邊三角形,又為中點所以,又所以因為平面,平面所以,又所以平面(2)過點作于點,過點作于點,連接當(dāng)與垂直時,與平面所成最大角.由(1)得,此時.所以就是與平面所成的角.在中,由題意可得:,又所以.設(shè),在中由等面積法得:解得:,所以因為平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一個平面角因為為的中點,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值為【點睛】本題主要考查了線面垂直的證明,考查了轉(zhuǎn)化能
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江安防職業(yè)技術(shù)學(xué)院《中學(xué)語文課程教學(xué)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 數(shù)獨答案生成器-20220303010135
- 數(shù)字教學(xué)實踐報告
- 經(jīng)典搞笑語錄集錦
- 部編版2024-2025學(xué)年六年級上語文寒假作業(yè)(七)(有答案)
- 浙江省杭州市拱墅區(qū)源清中學(xué)2024-2025學(xué)年高一(上)期中物理試卷(含答案)
- 2025屆吉林省前郭爾羅斯蒙古族自治縣第五高級中學(xué)高三上學(xué)期第五次考試歷史試題(綱要上下 選擇性必修三冊)(含答案解析)
- 《色達佛學(xué)院全景》課件
- 伊春職業(yè)學(xué)院《臺詞與表演》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度城市綜合體土石方運輸及配套設(shè)施合同3篇
- 2025山東水發(fā)集團限公司招聘管理單位筆試遴選500模擬題附帶答案詳解
- 2024-2030年中國建筑玻璃行業(yè)市場深度調(diào)研及競爭格局與投資價值預(yù)測研究報告
- 泌尿:膀胱腫瘤病人的護理查房王雪-課件
- 企業(yè)短期中期長期規(guī)劃
- 中華民族共同體概論講稿專家版《中華民族共同體概論》大講堂之第一講:中華民族共同體基礎(chǔ)理論
- 《商務(wù)溝通-策略、方法與案例》課件 第一章 商務(wù)溝通概論
- 廣西《乳腺X射線數(shù)字化體層攝影診療技術(shù)操作規(guī)范》編制說明
- 風(fēng)箏產(chǎn)業(yè)深度調(diào)研及未來發(fā)展現(xiàn)狀趨勢
- 吉利汽車集團總部機構(gòu)設(shè)置、崗位編制
- 礦山安全生產(chǎn)法律法規(guī)
- 小學(xué)數(shù)學(xué)《比的認識單元復(fù)習(xí)課》教學(xué)設(shè)計(課例)
評論
0/150
提交評論