版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023-2024學年貴州省安順市普通高中數(shù)學高一下期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,測量河對岸的塔高時,選與塔底B在同一水平面內(nèi)的兩個測點C與D.現(xiàn)測得,,,并在點C測得塔頂A的仰角為,則塔高為()A. B. C.60m D.20m2.設,則的大小關(guān)系為()A. B. C. D.3.某三棱柱的底面是邊長為2的正三角形,高為6,則該三棱柱的體積為A. B. C. D.4.直線2x+y+4=0與圓x+22+y+32=5A.255 B.4555.己知弧長的弧所對的圓心角為弧度,則這條弧所在的圓的半徑為()A. B. C. D.6.設,,則下列不等式成立的是()A. B. C. D.7.已知,,則()A.2 B. C.4 D.8.已知直線與相交于點,線段是圓的一條動弦,且,則的最小值是()A. B. C. D.9.在中,內(nèi)角的對邊分別為,若,那么()A. B. C. D.10.已知數(shù)列、、、、,可猜想此數(shù)列的通項公式是().A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11._________________.12.若存在實數(shù),使不等式成立,則的取值范圍是_______________.13.已知無窮等比數(shù)列的所有項的和為,則首項的取值范圍為_____________.14.若實數(shù)滿足,,則__________.15.若,點的坐標為,則點的坐標為.16.已知滿足約束條件,則的最大值為__三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在斜三棱柱中,側(cè)面是邊長為的菱形,平面,,點在底面上的射影為棱的中點,點在平面內(nèi)的射影為證明:為的中點:求三棱錐的體積18.已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,它的終邊過點P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β滿足sin(α+β)=,求cosβ的值.19.在△ABC中,AC=6,cosB=,C=.(1)求AB的長;(2)求△ABC的面積.20.在平面直角坐標系xOy中,已知點,圓.(1)求過點P且與圓C相切于原點的圓的標準方程;(2)過點P的直線l與圓C依次相交于A,B兩點.①若,求l的方程;②當面積最大時,求直線l的方程.21.已知三角形ABC的頂點為,,,M為AB的中點.(1)求CM所在直線的方程;(2)求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由正弦定理確定的長,再求出.【詳解】,由正弦定理得:故選D【點睛】本題是正弦定理的實際應用,關(guān)鍵是利用正弦定理求出,屬于基礎題.2、B【解析】
不難發(fā)現(xiàn)從而可得【詳解】,故選B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較數(shù)大小.3、C【解析】
計算結(jié)果.【詳解】因為底面是邊長為2的正三角形,所以底面的面積為,則該三棱柱的體積為.【點睛】本題考查了棱柱的體積公式,屬于簡單題型.4、C【解析】
先求出圓心到直線的距離d,然后根據(jù)圓的弦長公式l=2r【詳解】由題意得,圓x+22+y+32=5圓心-2,-3到直線2x+y+4=0的距離為d=|2×(-2)-3+4|∴MN=2故選C.【點睛】求圓的弦長有兩種方法:一是求出直線和圓的交點坐標,然后利用兩點間的距離公式求解;二是利用幾何法求解,即求出圓心到直線的距離,在由半徑、弦心距和半弦長構(gòu)成的直角三角形中運用勾股定理求解,此時不要忘了求出的是半弦長.在具體的求解中一般利用幾何法,以減少運算、增強解題的直觀性.5、D【解析】
利用弧長公式列出方程直接求解,即可得到答案.【詳解】由題意,弧長的弧所對的圓心角為2弧度,則,解得,故選D.【點睛】本題主要考查了圓的半徑的求法,考查弧長公式等基礎知識,考查了推理能力與計算能力,是基礎題.6、D【解析】試題分析:本題是選擇題,可采用逐一檢驗,利用特殊值法進行檢驗,很快問題得以解決.解:∵a>b,c>d;∴設a=1,b=-1,c=-2,d=-5,選項A,1-(-2)>-1-(-5),不成立;選項B,1(-2)>(-1)(-5),不成立;取選項C,,不成立,故選D考點:不等式的性質(zhì)點評:本題主要考查了基本不等式,基本不等式在考綱中是C級要求,本題屬于基礎題7、C【解析】
先求出的坐標,再利用向量的模的公式求解.【詳解】由題得=(0,4)所以.故選C【點睛】本題主要考查向量的坐標的求法和向量的模的計算,意在考查學生對這些知識的理解掌握水平和分析推理能力.8、D【解析】
由已知的所給的直線,可以判斷出直線過定點(3,1),直線過定點(1,3),兩直線互相垂直,從而可以得到的軌跡方程,設圓心為M,半徑為,作直線,可以求出的值,設圓的半徑為,求得的最小值,進而可求出的最小值.【詳解】圓的半徑為,直線與直線互相垂直,直線過定點(3,1),直線過定點(1,3),所以P點的軌跡為:設圓心為M,半徑為作直線,根據(jù)垂徑定理和勾股定理可得:,如下圖所示:的最小值就是在同一條直線上時,即則的最小值為,故本題選D.【點睛】本題考查了直線與圓相交的性質(zhì),考查了圓與圓的位置關(guān)系,考查了平面向量模的最小值求法,運用平面向量的加法的幾何意義是解題的關(guān)鍵.9、B【解析】
化簡,再利用余弦定理求解即可.【詳解】.故.又,故.故選:B【點睛】本題主要考查了余弦定理求解三角形的問題,屬于基礎題.10、D【解析】
利用賦值法逐項排除可得出結(jié)果.【詳解】對于A選項,,不合乎題意;對于B選項,,不合乎題意;對于C選項,,不合乎題意;對于D選項,當為奇數(shù)時,,此時,當為偶數(shù)時,,此時,合乎題意.故選:D.【點睛】本題考查利用觀察法求數(shù)列的通項,考查推理能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
分式上下為的二次多項式,故上下同除以進行分析.【詳解】由題,,又,故.
故答案為:3.【點睛】本題考查了分式型多項式的極限問題,注意:當時,12、;【解析】
不等式轉(zhuǎn)化為,由于存在,使不等式成立,因此只要求得的最小值即可.【詳解】由題意存在,使得不等式成立,當時,,其最小值為,∴.故答案為.【點睛】本題考查不等式能成立問題,解題關(guān)鍵是把問題轉(zhuǎn)化為求函數(shù)的最值.不等式能成立與不等式恒成立問題的轉(zhuǎn)化區(qū)別:在定義域上,不等式恒成立,則,不等式能成立,則,不等式恒成立,則,不等式能成立,則.轉(zhuǎn)化時要注意是求最大值還是求最小值.13、【解析】
設等比數(shù)列的公比為,根據(jù)題意得出或,根據(jù)無窮等比數(shù)列的和得出與所滿足的關(guān)系式,由此可求出實數(shù)的取值范圍.【詳解】設等比數(shù)列的公比為,根據(jù)題意得出或,由于無窮等比數(shù)列的所有項的和為,則,.當時,則,此時,;當時,則,此時,.因此,首項的取值范圍是.故答案為:.【點睛】本題考查利用無窮等比數(shù)列的和求首項的取值范圍,解題的關(guān)鍵就是結(jié)合題意得出首項和公比的關(guān)系式,利用不等式的性質(zhì)或函數(shù)的單調(diào)性來求解,考查分析問題和解決問題的能力,屬于中等題.14、【解析】
由反正弦函數(shù)的定義求解.【詳解】∵,∴,,∴,∴.故答案為:.【點睛】本題考查反正弦函數(shù),解題時注意反正弦函數(shù)的取值范圍是,結(jié)合誘導公式求解.15、【解析】試題分析:設,則有,所以,解得,所以.考點:平面向量的坐標運算.16、【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】由約束條件作出可行域,如圖所示,化目標函數(shù)為,由圖可得,當直線過時,直線在軸上的截距最大,所以有最大值為.故答案為1.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析(2)【解析】
(1)先證平面平面,說明平面且,根據(jù)菱形的性質(zhì)即可說明為的中點.(2)根據(jù),即求出即可.【詳解】(1)證明:因為面,平面,所以平面平面;交線為過作,則平面,又是菱形,,所以為的中點(2)由題意平面【點睛】本題考查面面垂直的性質(zhì)定理,利用等體積轉(zhuǎn)換法求三棱錐的體積,屬于基礎題.18、(Ⅰ);(Ⅱ)或.【解析】
分析:(Ⅰ)先根據(jù)三角函數(shù)定義得,再根據(jù)誘導公式得結(jié)果,(Ⅱ)先根據(jù)三角函數(shù)定義得,再根據(jù)同角三角函數(shù)關(guān)系得,最后根據(jù),利用兩角差的余弦公式求結(jié)果.【詳解】詳解:(Ⅰ)由角的終邊過點得,所以.(Ⅱ)由角的終邊過點得,由得.由得,所以或.點睛:三角函數(shù)求值的兩種類型(1)給角求值:關(guān)鍵是正確選用公式,以便把非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù).(2)給值求值:關(guān)鍵是找出已知式與待求式之間的聯(lián)系及函數(shù)的差異.①一般可以適當變換已知式,求得另外函數(shù)式的值,以備應用;②變換待求式,便于將已知式求得的函數(shù)值代入,從而達到解題的目的.19、(1)(2)21【解析】
(1)由,求得,再由正弦定理,即可求解.(2)由(1)和,求得,再由三角形的面積公式,即可求解.【詳解】(1)由題意,因為,且為三角形的內(nèi)角,所以,由正弦定理,可得,即,解得.(2)由(1)和,則,由三角形的面積公式,可得.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應用,其中在解有關(guān)三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎題.20、(1);(2)①;②或.【解析】
(1)設所求圓的圓心為,而所求圓的圓心與、共線,故圓心在直線上,又圓同時經(jīng)過點與點,求出圓的圓心和半徑,即可得答案;(2)①由題意可得為圓的直徑,求出的坐標,可得直線的方程;②當直線的斜率不存在時,直線方程為,求出,的坐標,得到的面積;當直線的斜率存在時,設直線方程為.利用基本不等式、點到直線的距離公式求得,則直線方程可求.【詳解】(1)由,得,圓的圓心坐標,設所求圓的圓心為.而所求圓的圓心與、共線,故圓心在直線上,又圓同時經(jīng)過點與點,圓心又在直線上,則有:,解得:,即圓心的坐標為,又,即半徑,故所求圓的方程為;(2)①由,得為圓的直徑,則過點,的方程為,聯(lián)立,解得,直線的斜率,則直線的方程為,即;②當直線的斜率不存在時,直線方程為,此時,,,;當直線的斜率存在時,設直線方程為.再設直線被圓所截弦長為,則圓心到直線的距離,則.當且僅當,即時等號成立.此時弦長為10,圓心到直線的距離為5,由,解得.直線方程為.當面積最大時,所求直線的方程為:或.【點睛】本題考查圓的方程的求法、直線與圓的位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科學技術(shù)職業(yè)學院《建筑給水排水》2023-2024學年第一學期期末試卷
- 廣東酒店管理職業(yè)技術(shù)學院《社會工作基礎》2023-2024學年第一學期期末試卷
- 廣東金融學院《動物微生物與免疫學》2023-2024學年第一學期期末試卷
- 廣東建設職業(yè)技術(shù)學院《國際金融管理》2023-2024學年第一學期期末試卷
- 廣東工業(yè)大學《道路與橋梁工程實訓》2023-2024學年第一學期期末試卷
- 廣東東軟學院《高級日語(I)》2023-2024學年第一學期期末試卷
- 廣東創(chuàng)新科技職業(yè)學院《導向信息媒體設計》2023-2024學年第一學期期末試卷
- 上海中醫(yī)藥基礎醫(yī)學免疫學課件緒論
- 廣東白云學院《計算機繪圖CAD》2023-2024學年第一學期期末試卷
- 共青科技職業(yè)學院《西方音樂史與欣賞Ⅰ》2023-2024學年第一學期期末試卷
- 九一八《勿忘國恥吾輩當自強》教案
- 2024年離婚協(xié)議書簡單離婚協(xié)議書
- 2024年新北師大版一年級上冊數(shù)學教學課件 總復習(1) 數(shù)與代數(shù)
- 期末試卷(試題)-2024-2025學年二年級上冊數(shù)學北師大版
- 高二數(shù)學數(shù)列小結(jié)省公開課金獎全國賽課一等獎微課獲獎課件
- 《文化研究導論》全套教學課件
- 12G614-1砌體填充墻結(jié)構(gòu)構(gòu)造
- 勞保用品發(fā)放記錄
- 自然拼讀法基本規(guī)則 教案
- 德語語言學導論智慧樹知到期末考試答案章節(jié)答案2024年中國海洋大學
- 檢驗試劑實施方案范文
評論
0/150
提交評論