無錫市重點中學中考數(shù)學猜題卷及答案解析_第1頁
無錫市重點中學中考數(shù)學猜題卷及答案解析_第2頁
無錫市重點中學中考數(shù)學猜題卷及答案解析_第3頁
無錫市重點中學中考數(shù)學猜題卷及答案解析_第4頁
無錫市重點中學中考數(shù)學猜題卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

無錫市重點中學中考數(shù)學猜題卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結(jié)論的個數(shù)是()A.4 B.3 C.2 D.12.如圖,已知菱形ABCD,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為()A.16 B.12 C.24 D.183.已知在一個不透明的口袋中有4個形狀、大小、材質(zhì)完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.94.已知如圖,△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.315° B.270° C.180° D.135°5.如圖是反比例函數(shù)(k為常數(shù),k≠0)的圖象,則一次函數(shù)的圖象大致是()A. B. C. D.6.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.7.如圖,在平行四邊形ABCD中,F(xiàn)是邊AD上的一點,射線CF和BA的延長線交于點E,如果,那么的值是()A. B. C. D.8.下列圖形中,不是軸對稱圖形的是()A. B. C. D.9.如圖,△ABC在平面直角坐標系中第二象限內(nèi),頂點A的坐標是(﹣2,3),先把△ABC向右平移6個單位得到△A1B1C1,再作△A1B1C1關于x軸對稱圖形△A2B2C2,則頂點A2的坐標是()A.(4,﹣3) B.(﹣4,3) C.(5,﹣3) D.(﹣3,4)10.﹣的絕對值是()A.﹣ B.﹣ C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.某數(shù)學興趣小組在研究下列運算流程圖時發(fā)現(xiàn),取某個實數(shù)范圍內(nèi)的x作為輸入值,則永遠不會有輸出值,這個數(shù)學興趣小組所發(fā)現(xiàn)的實數(shù)x的取值范圍是_____.12.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=6,AD=8,則四邊形ABOM的周長為_____.13.小球在如圖所示的地板上自由地滾動,并隨機地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.14.已知圓錐的底面圓半徑為3cm,高為4cm,則圓錐的側(cè)面積是________cm2.15.已知圖中的兩個三角形全等,則∠1等于____________.16.規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[1.3]=1,(1.3)=3,[1.3)=1.則下列說法正確的是________.(寫出所有正確說法的序號)①當x=1.7時,[x]+(x)+[x)=6;②當x=﹣1.1時,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解為1<x<1.5;④當﹣1<x<1時,函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有兩個交點.三、解答題(共8題,共72分)17.(8分)某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為元.①求關于的函數(shù)關系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調(diào)元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.18.(8分)先化簡,后求值:(1﹣)÷(),其中a=1.19.(8分)如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.試判斷DE與⊙O的位置關系,并說明理由;過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.20.(8分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(A在B的左側(cè)),與y軸交于點C.(1)當A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標;(2)P(m,t)為拋物線上的一個動點.①當點P關于原點的對稱點P′落在直線BC上時,求m的值;②當點P關于原點的對稱點P′落在第一象限內(nèi),P′A2取得最小值時,求m的值及這個最小值.21.(8分)為了了解初一年級學生每學期參加綜合實踐活動的情況,某區(qū)教育行政部門隨機抽樣調(diào)查了部分初一學生一個學期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,回答下列問題:(I)本次隨機抽樣調(diào)查的學生人數(shù)為,圖①中的m的值為;(II)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);(III)若該區(qū)初一年級共有學生2500人,請估計該區(qū)初一年級這個學期參加綜合實踐活動的天數(shù)大于4天的學生人數(shù).22.(10分)已知C為線段上一點,關于x的兩個方程與的解分別為線段的長,當時,求線段的長;若C為線段的三等分點,求m的值.23.(12分)列方程解應用題:某商場用8萬元購進一批新款襯衫,上架后很快銷售一空,商場又緊急購進第二批這種襯衫,數(shù)量是第一次的2倍,但進價漲了4元/件,結(jié)果共用去17.6萬元.該商場第一批購進襯衫多少件?商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?24.4件同型號的產(chǎn)品中,有1件不合格品和3件合格品.從這4件產(chǎn)品中隨機抽取1件進行檢測,求抽到的是不合格品的概率;從這4件產(chǎn)品中隨機抽取2件進行檢測,求抽到的都是合格品的概率;在這4件產(chǎn)品中加入x件合格品后,進行如下試驗:隨機抽取1件進行檢測,然后放回,多次重復這個試驗,通過大量重復試驗后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:由拋物線開口方向得a<0,由拋物線的對稱軸位置可得b>0,由拋物線與y軸的交點位置可得c>0,則可對①進行判斷;根據(jù)拋物線與x軸的交點個數(shù)得到b2﹣4ac>0,加上a<0,則可對②進行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對③進行判斷;設A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據(jù)拋物線與x軸的交點問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數(shù)的關系得到x1?x2=,于是OA?OB=﹣,則可對④進行判斷.解:∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側(cè),∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,而a<0,∴<0,所以②錯誤;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正確;設A(x1,0),B(x2,0),∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=﹣,所以④正確.故選B.考點:二次函數(shù)圖象與系數(shù)的關系.2、A【解析】

由菱形ABCD,∠B=60°,易證得△ABC是等邊三角形,繼而可得AC=AB=4,則可求得以AC為邊長的正方形ACEF的周長.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等邊三角形,∴AC=AB=BC=4,∴以AC為邊長的正方形ACEF的周長為:4AC=1.故選A.【點睛】本題考查了菱形的性質(zhì)、正方形的性質(zhì)以及等邊三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應用.3、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數(shù)占總情況數(shù)的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數(shù)有6種,所以概率為12故選D.考點:列表法與樹狀法.4、B【解析】

利用三角形內(nèi)角與外角的關系:三角形的任一外角等于和它不相鄰的兩個內(nèi)角之和解答.【詳解】如圖,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故選B.【點睛】此題主要考查了三角形內(nèi)角與外角的關系:三角形的任一外角等于和它不相鄰的兩個內(nèi)角之和.5、B【解析】根據(jù)圖示知,反比例函數(shù)的圖象位于第一、三象限,∴k>0,∴一次函數(shù)y=kx?k的圖象與y軸的交點在y軸的負半軸,且該一次函數(shù)在定義域內(nèi)是增函數(shù),∴一次函數(shù)y=kx?k的圖象經(jīng)過第一、三、四象限;故選:B.6、D【解析】

根據(jù)軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內(nèi),把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;B.不是軸對稱圖形,是中心對稱圖形,故不符合題意;C.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;D.既是軸對稱圖形又是中心對稱圖形,故符合題意.故選D.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關鍵.7、D【解析】分析:根據(jù)相似三角形的性質(zhì)進行解答即可.詳解:∵在平行四邊形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故選D.點睛:考查相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.8、A【解析】

觀察四個選項圖形,根據(jù)軸對稱圖形的概念即可得出結(jié)論.【詳解】根據(jù)軸對稱圖形的概念,可知:選項A中的圖形不是軸對稱圖形.故選A.【點睛】此題主要考查了軸對稱圖形,軸對稱圖形的關鍵是尋找對稱軸,對稱軸可使圖形兩部分折疊后重合.9、A【解析】

直接利用平移的性質(zhì)結(jié)合軸對稱變換得出對應點位置.【詳解】如圖所示:頂點A2的坐標是(4,-3).故選A.【點睛】此題主要考查了軸對稱變換和平移變換,正確得出對應點位置是解題關鍵.10、C【解析】

根據(jù)負數(shù)的絕對值是它的相反數(shù),可得答案.【詳解】│-│=,A錯誤;│-│=,B錯誤;││=,D錯誤;││=,故選C.【點睛】本題考查了絕對值,解題的關鍵是掌握絕對值的概念進行解題.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

通過找到臨界值解決問題.【詳解】由題意知,令3x-1=x,x=,此時無輸出值當x>時,數(shù)值越來越大,會有輸出值;當x<時,數(shù)值越來越小,不可能大于10,永遠不會有輸出值故x≤,故答案為x≤.【點睛】本題考查不等式的性質(zhì),解題的關鍵是理解題意,學會找到臨界值解決問題.12、1.【解析】

根據(jù)矩形的性質(zhì),直角三角形斜邊中線性質(zhì),三角形中位線性質(zhì)求出BO、OM、AM即可解決問題.【詳解】解:∵四邊形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴∵AO=OC,∴∵AO=OC,AM=MD=4,∴∴四邊形ABOM的周長為AB+OB+OM+AM=6+5+3+4=1.故答案為:1.【點睛】本題看成矩形的性質(zhì)、三角形中位線定理、直角三角形斜邊中線性質(zhì)等知識,解題的關鍵是靈活應用中線知識解決問題,屬于中考??碱}型.13、2【解析】試題分析:根據(jù)題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:41814、15π【解析】【分析】設圓錐母線長為l,根據(jù)勾股定理求出母線長,再根據(jù)圓錐側(cè)面積公式即可得出答案.【詳解】設圓錐母線長為l,∵r=3,h=4,∴母線l=,∴S側(cè)=×2πr×5=×2π×3×5=15π,故答案為15π.【點睛】本題考查了圓錐的側(cè)面積,熟知圓錐的母線長、底面半徑、圓錐的高以及圓錐的側(cè)面積公式是解題的關鍵.15、58°【解析】如圖,∠2=180°?50°?72°=58°,∵兩個三角形全等,∴∠1=∠2=58°.故答案為58°.16、②③【解析】試題解析:①當x=1.7時,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①錯誤;②當x=﹣1.1時,[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正確;③當1<x<1.5時,4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正確;④∵﹣1<x<1時,∴當﹣1<x<﹣0.5時,y=[x]+(x)+x=﹣1+0+x=x﹣1,當﹣0.5<x<0時,y=[x]+(x)+x=﹣1+0+x=x﹣1,當x=0時,y=[x]+(x)+x=0+0+0=0,當0<x<0.5時,y=[x]+(x)+x=0+1+x=x+1,當0.5<x<1時,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,則x﹣1=4x時,得x=;x+1=4x時,得x=;當x=0時,y=4x=0,∴當﹣1<x<1時,函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有三個交點,故④錯誤,故答案為②③.考點:1.兩條直線相交或平行問題;1.有理數(shù)大小比較;3.解一元一次不等式組.三、解答題(共8題,共72分)17、(1)每部型手機的銷售利潤為元,每部型手機的銷售利潤為元;(2)①;②手機店購進部型手機和部型手機的銷售利潤最大;(3)手機店購進部型手機和部型手機的銷售利潤最大.【解析】

(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元,根據(jù)題意列出方程組求解即可;(2)①根據(jù)總利潤=銷售A型手機的利潤+銷售B型手機的利潤即可列出函數(shù)關系式;②根據(jù)題意,得,解得,根據(jù)一次函數(shù)的增減性可得當當時,取最大值;(3)根據(jù)題意,,,然后分①當時,②當時,③當時,三種情況進行討論求解即可.【詳解】解:(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.根據(jù)題意,得,解得答:每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.(2)①根據(jù)題意,得,即.②根據(jù)題意,得,解得.,,隨的增大而減小.為正整數(shù),當時,取最大值,.即手機店購進部型手機和部型手機的銷售利潤最大.(3)根據(jù)題意,得.即,.①當時,隨的增大而減小,當時,取最大值,即手機店購進部型手機和部型手機的銷售利潤最大;②當時,,,即手機店購進型手機的數(shù)量為滿足的整數(shù)時,獲得利潤相同;③當時,,隨的增大而增大,當時,取得最大值,即手機店購進部型手機和部型手機的銷售利潤最大.【點睛】本題主要考查一次函數(shù)的應用,二元一次方程組的應用,解此題的關鍵在于熟練掌握一次函數(shù)的增減性.18、,2.【解析】

先根據(jù)分式的混合運算順序和運算法則化簡原式,再將a的值代入計算可得.【詳解】解:原式=,當a=1時,原式==2.【點睛】本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則.19、(1)DE與⊙O相切,理由見解析;(2)陰影部分的面積為2π﹣.【解析】

(1)直接利用角平分線的定義結(jié)合平行線的判定與性質(zhì)得出∠DEB=∠EDO=90°,進而得出答案;(2)利用勾股定理結(jié)合扇形面積求法分別分析得出答案.【詳解】(1)DE與⊙O相切,理由:連接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分線交⊙O于點D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE與⊙O相切;(2)∵∠ABC的平分線交⊙O于點D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF=,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=,∴DO=2,則FO=,故圖中陰影部分的面積為:.【點睛】此題主要考查了切線的判定方法以及扇形面積求法等知識,正確得出DO的長是解題關鍵.20、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解析】

(1)根據(jù)A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數(shù))的圖象上,可以求得b、c的值;(3)①根據(jù)題意可以得到點P′的坐標,再根據(jù)函數(shù)解析式可以求得點B的坐標,進而求得直線BC的解析式,再根據(jù)點P′落在直線BC上,從而可以求得m的值;②根據(jù)題意可以表示出P′A3,從而可以求得當P′A3取得最小值時,m的值及這個最小值.【詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數(shù))與x軸相交于A,B兩點,與y軸交于點C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點坐標為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點P和P′關于原點對稱,∴P′(﹣m,﹣t),當y=3時,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點B(1,3).∵點B(1,3),點C(3,﹣1),設直線BC對應的函數(shù)解析式為:y=kx+d,,解得:,∴直線BC的直線解析式為y=x﹣1.∵點P′落在直線BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;②由題意可知,點P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函數(shù)的最小值是﹣4,∴﹣4≤t<3.∵點P(m,t)在拋物線上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,過點P′作P′H⊥x軸,H為垂足,有H(﹣m,3).又∵A(﹣1,3),則P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴當t=﹣時,P′A3有最小值,此時P′A3=,∴=m3﹣3m﹣1,解得:m=.∵m<3,∴m=,即P′A3取得最小值時,m的值是,這個最小值是.【點睛】本題是二次函數(shù)綜合題,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用二次函數(shù)的性質(zhì)解答.21、(I)150、14;(II)眾數(shù)為3天、中位數(shù)為4天,平均數(shù)為3.5天;(III)700人【解析】

(I)根據(jù)1天的人數(shù)及其百分比可得總?cè)藬?shù),總?cè)藬?shù)減去其它天數(shù)的人數(shù)即可得m的值;(II)根據(jù)眾數(shù)、中位數(shù)和平均數(shù)的定義計算可得;(III)用總?cè)藬?shù)乘以樣本中5天、6天的百分比之和可得.【詳解】解:(I)本次隨機抽樣調(diào)查的學生人數(shù)為18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案為150、14;(II)眾數(shù)為3天、中位數(shù)為第75、76個數(shù)據(jù)的平均數(shù),即平均數(shù)為=4天,平均數(shù)為=3.5天;(III)估計該區(qū)初一年級這個學期參加綜合實踐活動的天數(shù)大于4天的學生有2500×(18%+10%)=700人.【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關鍵.22、(1);(2)或1.【解析】

(1)把m=2代入兩個方程,解方程即可求出AC、BC的長,由C為線段上一點即可得AB的長;(2)分別解兩個方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論