廣東省佛山市順德區(qū)碧桂園校中考數(shù)學(xué)全真模擬試卷及答案解析_第1頁
廣東省佛山市順德區(qū)碧桂園校中考數(shù)學(xué)全真模擬試卷及答案解析_第2頁
廣東省佛山市順德區(qū)碧桂園校中考數(shù)學(xué)全真模擬試卷及答案解析_第3頁
廣東省佛山市順德區(qū)碧桂園校中考數(shù)學(xué)全真模擬試卷及答案解析_第4頁
廣東省佛山市順德區(qū)碧桂園校中考數(shù)學(xué)全真模擬試卷及答案解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省佛山市順德區(qū)碧桂園校中考數(shù)學(xué)全真模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,矩形ABCD內(nèi)接于⊙O,點(diǎn)P是上一點(diǎn),連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.2.“綠水青山就是金山銀山”.某工程隊(duì)承接了60萬平方米的荒山綠化任務(wù),為了迎接雨季的到來,實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了25%,結(jié)果提前30天完成了這一任務(wù).設(shè)實(shí)際工作時(shí)每天綠化的面積為x萬平方米,則下面所列方程中正確的是()A. B.C. D.3.如圖,在射線AB上順次取兩點(diǎn)C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為α(其中0°<α<45°),旋轉(zhuǎn)后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點(diǎn)G,H.若CG=x,EH=y,則下列函數(shù)圖象中,能反映y與x之間關(guān)系的是()A. B. C. D.4.如圖,將邊長為2cm的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)5.拒絕“餐桌浪費(fèi)”,刻不容緩.節(jié)約一粒米的帳:一個(gè)人一日三餐少浪費(fèi)一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為()A. B. C. D..6.內(nèi)角和為540°的多邊形是()A. B. C. D.7.下列關(guān)于事件發(fā)生可能性的表述,正確的是()A.事件:“在地面,向上拋石子后落在地上”,該事件是隨機(jī)事件B.體育彩票的中獎(jiǎng)率為10%,則買100張彩票必有10張中獎(jiǎng)C.在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品D.?dāng)S兩枚硬幣,朝上的一面是一正面一反面的概率為8.已知,下列說法中,不正確的是()A. B.與方向相同C. D.9.如圖所示是由幾個(gè)完全相同的小正方體組成的幾何體的三視圖.若小正方體的體積是1,則這個(gè)幾何體的體積為()A.2 B.3 C.4 D.510.如圖,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l11.下列二次根式中,最簡二次根式的是()A. B. C. D.12.若關(guān)于x的不等式組恰有3個(gè)整數(shù)解,則字母a的取值范圍是()A.a(chǎn)≤﹣1 B.﹣2≤a<﹣1 C.a(chǎn)<﹣1 D.﹣2<a≤﹣1二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如果關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,那么的取值范圍是__________.14.若一個(gè)多邊形的內(nèi)角和是900o,則這個(gè)多邊形是邊形.15.若點(diǎn)A(3,﹣4)、B(﹣2,m)在同一個(gè)反比例函數(shù)的圖象上,則m的值為.16.如果m,n互為相反數(shù),那么|m+n﹣2016|=___________.17.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.18.如圖,點(diǎn)分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠ABC=90°.(1)作∠ACB的平分線交AB邊于點(diǎn)O,再以點(diǎn)O為圓心,OB的長為半徑作⊙O;(要求:不寫做法,保留作圖痕跡)(2)判斷(1)中AC與⊙O的位置關(guān)系,直接寫出結(jié)果.20.(6分)如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.(1)求新傳送帶AC的長度;(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)21.(6分)如圖,AB為⊙O的直徑,直線BM⊥AB于點(diǎn)B,點(diǎn)C在⊙O上,分別連接BC,AC,且AC的延長線交BM于點(diǎn)D,CF為⊙O的切線交BM于點(diǎn)F.(1)求證:CF=DF;(2)連接OF,若AB=10,BC=6,求線段OF的長.22.(8分)如圖1,B(2m,0),C(3m,0)是平面直角坐標(biāo)系中兩點(diǎn),其中m為常數(shù),且m>0,E(0,n)為y軸上一動(dòng)點(diǎn),以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點(diǎn).(1)填空:∠AOB=°,用m表示點(diǎn)A′的坐標(biāo):A′(,);(2)當(dāng)拋物線的頂點(diǎn)為A′,拋物線與線段AB交于點(diǎn)P,且時(shí),△D′OE與△ABC是否相似?說明理由;(3)若E與原點(diǎn)O重合,拋物線與射線OA的另一個(gè)交點(diǎn)為點(diǎn)M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關(guān)系式;②當(dāng)m為定值,拋物線與四邊形ABCD有公共點(diǎn),線段MN的最大值為10,請(qǐng)你探究a的取值范圍.23.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對(duì)角線,直線AE與直線BF交于點(diǎn)H(1)觀察猜想如圖1,當(dāng)四邊形ABCD和EFCG均為正方形時(shí),線段AE和BF的數(shù)量關(guān)系是;∠AHB=.(2)探究證明如圖2,當(dāng)四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時(shí),(1)中的結(jié)論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點(diǎn)C旋轉(zhuǎn),在整個(gè)旋轉(zhuǎn)過程中,當(dāng)A、E、F三點(diǎn)共線時(shí),請(qǐng)直接寫出點(diǎn)B到直線AE的距離.24.(10分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.25.(10分)如圖,在中,,是邊上的高線,平分交于點(diǎn),經(jīng)過,兩點(diǎn)的交于點(diǎn),交于點(diǎn),為的直徑.(1)求證:是的切線;(2)當(dāng),時(shí),求的半徑.26.(12分)如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).求燈桿CD的高度;求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)27.(12分)如圖所示,PB是⊙O的切線,B為切點(diǎn),圓心O在PC上,∠P=30°,D為弧BC的中點(diǎn).(1)求證:PB=BC;(2)試判斷四邊形BOCD的形狀,并說明理由.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設(shè)DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結(jié)論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設(shè)DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點(diǎn)睛】本題考查了圓周角定理與勾股定理,解題的關(guān)鍵是熟練的掌握?qǐng)A周角定理與勾股定理的應(yīng)用.2、C【解析】分析:設(shè)實(shí)際工作時(shí)每天綠化的面積為x萬平方米,根據(jù)工作時(shí)間=工作總量÷工作效率結(jié)合提前30天完成任務(wù),即可得出關(guān)于x的分式方程.詳解:設(shè)實(shí)際工作時(shí)每天綠化的面積為x萬平方米,則原來每天綠化的面積為萬平方米,依題意得:,即.故選C.點(diǎn)睛:考查了由實(shí)際問題抽象出分式方程.找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.3、D【解析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)、相似等知識(shí),解題的關(guān)鍵是根據(jù)已知得出△ACG∽△ADH.4、A【解析】

作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質(zhì)得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結(jié)果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點(diǎn)A的坐標(biāo)為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點(diǎn)C的坐標(biāo)為(,﹣1).故選A.【點(diǎn)睛】本題考查了正方形的性質(zhì)、坐標(biāo)與圖形性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等得出對(duì)應(yīng)邊相等是解決問題的關(guān)鍵.5、C【解析】

用科學(xué)記數(shù)法表示較大的數(shù)時(shí),一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】32400000=3.24×107元.

故選C.【點(diǎn)睛】此題主要考查了用科學(xué)記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵.6、C【解析】試題分析:設(shè)它是n邊形,根據(jù)題意得,(n﹣2)?180°=140°,解得n=1.故選C.考點(diǎn):多邊形內(nèi)角與外角.7、C【解析】

根據(jù)隨機(jī)事件,必然事件的定義以及概率的意義對(duì)各個(gè)小題進(jìn)行判斷即可.【詳解】解:A.事件:“在地面,向上拋石子后落在地上”,該事件是必然事件,故錯(cuò)誤.B.體育彩票的中獎(jiǎng)率為10%,則買100張彩票可能有10張中獎(jiǎng),故錯(cuò)誤.C.在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品,正確.D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為,故錯(cuò)誤.故選:C.【點(diǎn)睛】考查必然事件,隨機(jī)事件的定義以及概率的意義,概率=所求情況數(shù)與總情況數(shù)之比.8、A【解析】

根據(jù)平行向量以及模的定義的知識(shí)求解即可求得答案,注意掌握排除法在選擇題中的應(yīng)用.【詳解】A、,故該選項(xiàng)說法錯(cuò)誤B、因?yàn)?,所以與的方向相同,故該選項(xiàng)說法正確,C、因?yàn)椋?,故該選項(xiàng)說法正確,D、因?yàn)椋?;故該選項(xiàng)說法正確,故選:A.【點(diǎn)睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.9、C【解析】

根據(jù)左視圖發(fā)現(xiàn)最右上角共有2個(gè)小立方體,綜合以上,可以發(fā)現(xiàn)一共有4個(gè)立方體,主視圖和左視圖都是上下兩行,所以這個(gè)幾何體共由上下兩層小正方體組成,俯視圖有3個(gè)小正方形,所以下面一層共有3個(gè)小正方體,結(jié)合主視圖和左視圖的形狀可知上面一層只有最左邊有個(gè)小正方體,故這個(gè)幾何體由4個(gè)小正方體組成,其體積是4.故選C.【點(diǎn)睛】錯(cuò)因分析

容易題,失分原因:未掌握通過三視圖還原幾何體的方法.10、D【解析】∵△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點(diǎn)睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì)等知識(shí),得出AD,AF,DC′的長是解題關(guān)鍵.11、C【解析】

判定一個(gè)二次根式是不是最簡二次根式的方法,就是逐個(gè)檢查最簡二次根式的兩個(gè)條件是否同時(shí)滿足,同時(shí)滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項(xiàng)錯(cuò)誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項(xiàng)錯(cuò)誤;C、,是最簡二次根式;故C選項(xiàng)正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項(xiàng)錯(cuò)誤;故選C.考點(diǎn):最簡二次根式.12、B【解析】

根據(jù)“同大取大,同小取小,大小小大取中間,大大小小無解”即可求出字母a的取值范圍.【詳解】解:∵x的不等式組恰有3個(gè)整數(shù)解,∴整數(shù)解為1,0,-1,∴-2≤a<-1.故選B.【點(diǎn)睛】本題考查了一元一次不等式組的解法,先分別解兩個(gè)不等式,求出它們的解集,再求兩個(gè)不等式解集的公共部分.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、k>-且k≠1【解析】由題意知,k≠1,方程有兩個(gè)不相等的實(shí)數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.14、七【解析】

根據(jù)多邊形的內(nèi)角和公式,列式求解即可.【詳解】設(shè)這個(gè)多邊形是邊形,根據(jù)題意得,,解得.故答案為.【點(diǎn)睛】本題主要考查了多邊形的內(nèi)角和公式,熟記公式是解題的關(guān)鍵.15、1【解析】

設(shè)反比例函數(shù)解析式為y=,根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到k=3×(﹣4)=﹣2m,然后解關(guān)于m的方程即可.【詳解】解:設(shè)反比例函數(shù)解析式為y=,根據(jù)題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.16、1.【解析】試題分析:先用相反數(shù)的意義確定出m+n=0,從而求出|m+n﹣1|,∵m,n互為相反數(shù),∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案為1.考點(diǎn):1.絕對(duì)值的意義;2.相反數(shù)的性質(zhì).17、3【解析】

以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據(jù)三角形三邊關(guān)系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,

∵△ACD,△ABE是等邊三角形,

∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,

∴∠EAC=∠BAD,且AE=AB,AD=AC,

∴△DAB≌△CAE(SAS)

∴BD=CE,

若點(diǎn)E,點(diǎn)B,點(diǎn)C不共線時(shí),EC<BC+BE;

若點(diǎn)E,點(diǎn)B,點(diǎn)C共線時(shí),EC=BC+BE.

∴EC≤BC+BE=3,

∴EC的最大值為3,即BD的最大值為3.

故答案是:3【點(diǎn)睛】考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),以及三角形的三邊關(guān)系,恰當(dāng)添加輔助線構(gòu)造全等三角形是本題的關(guān)鍵.18、【解析】

根據(jù)△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據(jù)直角三角形的性質(zhì)即可求出△AEF的內(nèi)切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內(nèi)切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,

∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,

∴∠1+∠2=∠2+∠3=120°,∠1=∠3;

在△AEF和△CFD中,,

∴△AEF≌△CFD(AAS);

同理可證:△AEF≌△CFD≌△BDE;

∴BE=AF,即AE+AF=AE+BE=a.

設(shè)M是△AEF的內(nèi)心,過點(diǎn)M作MH⊥AE于H,

則根據(jù)圖1的結(jié)論得:AH=(AE+AF-EF)=(a-b);

∵M(jìn)A平分∠BAC,

∴∠HAM=30°;

∴HM=AH?tan30°=(a-b)?=故答案為:.【點(diǎn)睛】本題主要考查的是三角形的內(nèi)切圓、等邊三角形的性質(zhì)、全等三角形的性質(zhì)和判定,切線的性質(zhì),圓的切線長定理,根據(jù)已知得出AH的長是解題關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析(2)相切【解析】

(1)首先利用角平分線的作法得出CO,進(jìn)而以點(diǎn)O為圓心,OB為半徑作⊙O即可;(2)利用角平分線的性質(zhì)以及直線與圓的位置關(guān)系進(jìn)而求出即可.【詳解】(1)如圖所示:;(2)相切;過O點(diǎn)作OD⊥AC于D點(diǎn),∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O與直線AC相切,【點(diǎn)睛】此題主要考查了復(fù)雜作圖以及角平分線的性質(zhì)與作法和直線與圓的位置關(guān)系,正確利用角平分線的性質(zhì)求出d=r是解題關(guān)鍵.20、(1)5.6(2)貨物MNQP應(yīng)挪走,理由見解析.【解析】

(1)如圖,作AD⊥BC于點(diǎn)DRt△ABD中,AD=ABsin45°=4在Rt△ACD中,∵∠ACD=30°∴AC=2AD=4即新傳送帶AC的長度約為5.6米.(2)結(jié)論:貨物MNQP應(yīng)挪走.在Rt△ABD中,BD=ABcos45°=4在Rt△ACD中,CD=ACcos30°=∴CB=CD—BD=∵PC=PB—CB≈4—2.1=1.9<2∴貨物MNQP應(yīng)挪走.21、(1)詳見解析;(2)OF=.【解析】

(1)連接OC,如圖,根據(jù)切線的性質(zhì)得∠1+∠3=90°,則可證明∠3=∠4,再根據(jù)圓周角定理得到∠ACB=90°,然后根據(jù)等角的余角相等得到∠BDC=∠5,從而根據(jù)等腰三角形的判定定理得到結(jié)論;(2)根據(jù)勾股定理計(jì)算出AC=8,再證明△ABC∽△ABD,利用相似比得到AD=,然后證明OF為△ABD的中位線,從而根據(jù)三角形中位線性質(zhì)求出OF的長.【詳解】(1)證明:連接OC,如圖,∵CF為切線,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB為直徑,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴,即,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF為△ABD的中位線,∴OF=AD=.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理和垂徑定理.22、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】試題分析:(1)由B與C的坐標(biāo)求出OB與OC的長,進(jìn)一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數(shù);由旋轉(zhuǎn)的性質(zhì)得,即可確定出A′坐標(biāo);(2)△D′OE∽△ABC.表示出A與B的坐標(biāo),由,表示出P坐標(biāo),由拋物線的頂點(diǎn)為A′,表示出拋物線解析式,把點(diǎn)E坐標(biāo)代入即可得到m與n的關(guān)系式,利用三角形相似即可得證;(3)①當(dāng)E與原點(diǎn)重合時(shí),把A與E坐標(biāo)代入,整理即可得到a,b,m的關(guān)系式;②拋物線與四邊形ABCD有公共點(diǎn),可得出拋物線過點(diǎn)C時(shí)的開口最大,過點(diǎn)A時(shí)的開口最小,分兩種情況考慮:若拋物線過點(diǎn)C(3m,0),此時(shí)MN的最大值為10,求出此時(shí)a的值;若拋物線過點(diǎn)A(2m,2m),求出此時(shí)a的值,即可確定出拋物線與四邊形ABCD有公共點(diǎn)時(shí)a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉(zhuǎn)的性質(zhì)得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點(diǎn),∴設(shè)拋物線解析式為,∵拋物線過點(diǎn)E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),E(0,0),∵拋物線過點(diǎn)E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點(diǎn),∴拋物線過點(diǎn)C時(shí)的開口最大,過點(diǎn)A時(shí)的開口最小,若拋物線過點(diǎn)C(3m,0),此時(shí)MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯(lián)立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當(dāng)m=2時(shí),a=;若拋物線過點(diǎn)A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點(diǎn)時(shí)a的范圍為.考點(diǎn):1.二次函數(shù)綜合題;2.壓軸題;3.探究型;4.最值問題.23、(1),45°;(2)不成立,理由見解析;(3).【解析】

(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因?yàn)椤螩BA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因?yàn)椤螩BA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因?yàn)锳、E、F三點(diǎn)共線,及∠AFB=30°,∠AFC=90°,進(jìn)而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點(diǎn)共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當(dāng)A、E、F三點(diǎn)共線時(shí),由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當(dāng)A、E、F三點(diǎn)共線時(shí),同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當(dāng)A、E、F三點(diǎn)共線時(shí),點(diǎn)B到直線AE的距離為.【點(diǎn)睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點(diǎn)共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類討論三點(diǎn)共線問題是解題的關(guān)鍵.本題屬于中等偏難.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論