2025屆山東省德州市夏津第一中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆山東省德州市夏津第一中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆山東省德州市夏津第一中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆山東省德州市夏津第一中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆山東省德州市夏津第一中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆山東省德州市夏津第一中學數(shù)學高一下期末質(zhì)量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在三角形中,點是邊上靠近的三等分點,則()A. B.C. D.2.已知,則()A. B. C. D.3.已知直線,直線,若,則直線與的距離為()A. B. C. D.4.直線的傾斜角是()A. B. C. D.5.已知是函數(shù)的兩個零點,則()A. B.C. D.6.如圖,已知平行四邊形,,則()A. B.C. D.7.已知正數(shù)、滿足,則的最小值為()A. B. C. D.8.將某選手的7個得分去掉1個最高分,去掉1個最低分,5個剩余分數(shù)的平均分為21,現(xiàn)場作的7個分數(shù)的莖葉圖后來有1個數(shù)據(jù)模糊,無法辨認,在圖中以x表示,則5個剩余分數(shù)的方差為()A. B. C.36 D.9.在等比數(shù)列中,,,則的值為()A.3或-3 B.3 C.-3 D.不存在10.函數(shù)的最小正周期是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若銳角滿足則______.12.函數(shù)的最大值是__________.13.已知,,,則的最小值為________.14.已知向量,,則的最大值為_______.15.已知數(shù)列中,且當時,則數(shù)列的前項和=__________.16.已知向量,若向量與垂直,則等于_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的首項,其前n項和為滿足.(1)數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和表達式.18.求傾斜角為且分別滿足下列條件的直線方程:(1)經(jīng)過點;(2)在軸上的截距是-5.19.如圖,在四邊形中,.(1)若為等邊三角形,且是的中點,求.(2)若,,求.20.函數(shù).(1)求函數(shù)的周期和遞增區(qū)間;(2)若,求函數(shù)的值域.21.已知向量,,,.(1)若,且,求x的值;(2)對于,,定義.解不等式;(3)若存在,使得,求k的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

利用向量的三角形法則以及線性運算法則進行運算,即可得出結(jié)論.【詳解】因為點是邊上靠近的三等分點,所以,所以,故選:A.【點睛】本題考查向量的加?減法以及數(shù)乘運算,需要學生熟練掌握三角形法則和共線定理.2、C【解析】

根據(jù)特殊值排除A,B選項,根據(jù)單調(diào)性選出C,D選項中的正確選項.【詳解】當時,,故A,B兩個選項錯誤.由于,故,所以C選項正確,D選項錯誤.故本小題選C.【點睛】本小題主要考查三角函數(shù)值,考查對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.3、A【解析】

利用直線平行的性質(zhì)解得,再由兩平行線間的距離求解即可【詳解】∵直線l1:ax+2y﹣1=0,直線l2:8x+ay+2﹣a=0,l1∥l2,∴,且解得a=﹣1.所以直線l1:1x-2y+1=0,直線l2:1x-2y+3=0,故與的距離為故選A.【點睛】本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意直線平行的性質(zhì)的靈活運用.4、D【解析】

先求出直線的斜率,再求直線的傾斜角.【詳解】由題得直線的斜率.故選:D【點睛】本題主要考查直線的斜率和傾斜角的計算,意在考查學生對該知識的理解掌握水平和分析推理能力.5、A【解析】

在同一直角坐標系中作出與的圖象,設(shè)兩函數(shù)圖象的交點,依題意可得,利用對數(shù)的運算性質(zhì)結(jié)合圖象即可得答案.【詳解】解:,在同一直角坐標系中作出與的圖象,

設(shè)兩函數(shù)圖象的交點,

則,即,

又,

所以,,即,

所以①;

又,故,即②,由①②得:,

故選:A.【點睛】本題考查根的存在性及根的個數(shù)判斷,依題意可得是關(guān)鍵,考查作圖能力與運算求解能力,屬于難題.6、A【解析】

根據(jù)平面向量的加法運算,即可得到本題答案.【詳解】由題,得.故選:A【點睛】本題主要考查平面向量的加法運算,屬基礎(chǔ)題.7、B【解析】

由得,再將代數(shù)式與相乘,利用基本不等式可求出的最小值.【詳解】,所以,,則,所以,,當且僅當,即當時,等號成立,因此,的最小值為,故選.【點睛】本題考查利用基本不等式求最值,對代數(shù)式進行合理配湊,是解決本題的關(guān)鍵,屬于中等題.8、B【解析】

由剩余5個分數(shù)的平均數(shù)為21,據(jù)莖葉圖列方程求出x=4,由此能求出5個剩余分數(shù)的方差.【詳解】∵將某選手的7個得分去掉1個最高分,去掉1個最低分,剩余5個分數(shù)的平均數(shù)為21,∴由莖葉圖得:得x=4,∴5個分數(shù)的方差為:S2故選B【點睛】本題考查方差的求法,考查平均數(shù)、方差、莖葉圖基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是基礎(chǔ)題.9、C【解析】

解析過程略10、C【解析】

將函數(shù)化為,再根據(jù)周期公式可得答案.【詳解】因為=,所以最小正周期.故選:C【點睛】本題考查了兩角和的正弦公式的逆用,考查了正弦型函數(shù)的周期公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由已知利用同角三角函數(shù)基本關(guān)系式可求,的值,利用兩角差的余弦公式即可計算得解.【詳解】、為銳角,,,,,,.故答案為:.【點睛】本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,屬于基礎(chǔ)題.12、【解析】分析:利用兩角和正弦公式簡化為y=,從而得到函數(shù)的最大值.詳解:y=sinx+cosx==.∴函數(shù)的最大值是故答案為點睛:本題考查了兩角和正弦公式,考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.13、1【解析】

由題意整體代入可得,由基本不等式可得.【詳解】由,,,則.當且僅當=,即a=3且b=時,取得最小值1.故答案為:1.【點睛】本題考查基本不等式求最值,整體法并湊出可用基本不等式的形式是解決問題的關(guān)鍵,屬于基礎(chǔ)題.14、.【解析】

計算出,利用輔助角公式進行化簡,并求出的最大值,可得出的最大值.【詳解】,,,所以,,當且僅當,即當,等號成立,因此,的最大值為,故答案為.【點睛】本題考查平面向量模的最值的計算,涉及平面向量數(shù)量積的坐標運算以及三角恒等變換思想的應用,考查分析問題和解決問題的能力,屬于中等題.15、【解析】

先利用累乘法計算,再通過裂項求和計算.【詳解】,數(shù)列的前項和故答案為:【點睛】本題考查了累乘法,裂項求和,屬于數(shù)列的??碱}型.16、2【解析】

根據(jù)向量的數(shù)量積的運算公式,列出方程,即可求解.【詳解】由題意,向量,因為向量與垂直,所以,解得.故答案為:2.【點睛】本題主要考查了向量的坐標運算,以及向量的垂直關(guān)系的應用,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)等差數(shù)列性質(zhì),由可知為等差數(shù)列,結(jié)合首項與公差即可求得的表達式,由即可求得數(shù)列的通項公式;(2)代入數(shù)列的通項公式可得數(shù)列的通項公式.結(jié)合錯位相減法,即可求得數(shù)列的前n項和.【詳解】(1)由,可知是等差數(shù)列,其公差又,得,知首項為,得,即當時,有當,也滿足此通項,故;(2)由(1)可知,所以可得由兩式相減得整理得.【點睛】本題考查了等差數(shù)列通項公式的求法,的應用,錯位相減法求數(shù)列的前n項和,屬于中檔題.18、(1)(2)【解析】

(1)利用傾斜角與斜率的關(guān)系與點斜式求解即可.(2)利用點斜式求解即可.【詳解】解:(1)∵所求直線的傾斜角為,斜率,又∵經(jīng)過,故方程為∴即方程為.(2)∵所求直線在軸上的截距是-5,又有斜率,故方程為∴所求方程為【點睛】本題主要考查了直線斜率與傾斜角的關(guān)系以及直線方程的點斜式運用.屬于基礎(chǔ)題.19、(1)(2)【解析】

(1)先由題意,結(jié)合平面向量基本定理,用表示出,再由向量的數(shù)量積運算,即可得出結(jié)果;(2)先由向量數(shù)量積的運算,求出,再由,結(jié)合題中條件,即可得出結(jié)果.【詳解】解:(1)為等邊三角形,且,又是中點,又(2)由題意:,,,又【點睛】本題主要考查向量數(shù)量積的運算,熟記平面向量基本定理,以及向量數(shù)量積的運算法則即可,屬于??碱}型.20、(1)周期為,單調(diào)遞增區(qū)間為;(2).【解析】

(1)利用二倍角降冪公式、兩角差的正弦公式將函數(shù)的解析式化簡為,然后利用周期公式可計算出函數(shù)的周期,解不等式即可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由計算出的取值范圍,可得出的范圍,進而可得出函數(shù)的值域.【詳解】(1),所以,函數(shù)的周期為,由,解得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)當時,,則,,因此,函數(shù)在區(qū)間上的值域為.【點睛】本題考查正弦型三角函數(shù)周期、單調(diào)區(qū)間以及值域的求解,解題的關(guān)鍵就是利用三角恒等變換思想將解析式進行化簡,考查運算求解能力,屬于中等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論