版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
西藏拉薩市那曲二高2023-2024學(xué)年高一下數(shù)學(xué)期末達標(biāo)檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的值等于()A. B. C. D.2.若關(guān)于的不等式在區(qū)間上有解,則的取值范圍是()A. B. C. D.3.已知數(shù)列的前項和為,且,若,,則的值為()A.15 B.16 C.17 D.184.已知向量,,且與的夾角為,則()A. B.2 C. D.145.公差不為零的等差數(shù)列{an}的前n項和為Sn,若a3是a2與a6的等比中項,S3=3,則S8=()A.36 B.42 C.48 D.606.點直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或7.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A.3 B.4 C.5 D.68.函數(shù)()的部分圖象如圖所示,其中是圖象的最高點,是圖象與軸的交點,則()A. B. C. D.9.已知正實數(shù)滿足,則的最小值()A.2 B.3 C.4 D.10.如果直線l過點(2,1),且在y軸上的截距的取值范圍為(﹣1,2),那么l的斜率k的取值范圍是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)二、填空題:本大題共6小題,每小題5分,共30分。11.在四面體中,平面ABC,,若四面體ABCD的外接球的表面積為,則四面體ABCD的體積為_______.12.在中,,且,則.13.已知在數(shù)列中,且,若,則數(shù)列的前項和為__________.14.關(guān)于函數(shù),下列命題:①若存在,有時,成立;②在區(qū)間上是單調(diào)遞增;③函數(shù)的圖象關(guān)于點成中心對稱圖象;④將函數(shù)的圖象向左平移個單位后將與的圖象重合.其中正確的命題序號__________15.函數(shù)的值域為__________.16.已知向量,則的單位向量的坐標(biāo)為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),將的圖象向左平移個單位后得到的圖象,且在區(qū)間內(nèi)的最大值為.(1)求實數(shù)的值;(2)求函數(shù)與直線相鄰交點間距離的最小值.18.某超市為了解端午節(jié)期間粽子的銷售量,對其所在銷售范圍內(nèi)的1000名消費者在端午節(jié)期間的粽子購買量(單位:g)進行了問卷調(diào)查,得到如圖所示的頻率分布直方圖.(Ⅰ)求頻率分布直方圖中a的值;(Ⅱ)求這1000名消費者的棕子購買量在600g~1400g的人數(shù);(Ⅲ)求這1000名消費者的人均粽子購買量(頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表).19.某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(1)求頻率分布直方圖中的值;(2)估計該企業(yè)的職工對該部門評分不低于80的概率;(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.20.如圖,在直三棱柱中,,二面角為直角,為的中點.(1)求證:平面平面;(2)求直線與平面所成的角.21.已知向量,,且(1)求·及;(2)若,求的最小值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
利用誘導(dǎo)公式先化簡,再利用差角的余弦公式化簡得解.【詳解】由題得原式=.故選D【點睛】本題主要考查誘導(dǎo)公式和差角的余弦公式化簡求值,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.2、A【解析】
利用分離常數(shù)法得出不等式在上成立,根據(jù)函數(shù)在上的單調(diào)性,求出的取值范圍【詳解】關(guān)于的不等式在區(qū)間上有解在上有解即在上成立,設(shè)函數(shù)數(shù),恒成立在上是單調(diào)減函數(shù)且的值域為要在上有解,則即的取值范圍是故選【點睛】本題是一道關(guān)于一元二次不等式的題目,解題的關(guān)鍵是掌握一元二次不等式的解法,分離含參量,然后求出結(jié)果,屬于基礎(chǔ)題.3、B【解析】
推導(dǎo)出數(shù)列是等差數(shù)列,由解得,由此利用能求出的值.【詳解】數(shù)列的前項和為,且數(shù)列是等差數(shù)列解得解得故選:【點睛】本題考查等差數(shù)列的判定和基本量的求解,屬于基礎(chǔ)題.4、A【解析】
首先求出、,再根據(jù)計算可得;【詳解】解:,,又,且與的夾角為,所以.故選:A【點睛】本題考查平面向量的數(shù)量積以及運算律,屬于基礎(chǔ)題.5、C【解析】
設(shè)出等差數(shù)列的公差d,根據(jù)a3是a2與a6的等比中項,S3=3,利用等比數(shù)列的性質(zhì)和等差數(shù)列的前n項和的公式化簡得到關(guān)于等差數(shù)列首項和公差方程組,求出方程組的解集即可得到首項和公差,然后再利用等差數(shù)列的前n項和的公式求出S8即可【詳解】設(shè)公差為d(d≠0),則有,化簡得:,因為d≠0,解得a1=-1,d=2,則S8=-82=1.故選:C.【點評】此題考查運用等差數(shù)列的前n項和的公式及等比數(shù)列的通項公式化簡求值,意在考查公式運用,是基礎(chǔ)題.6、C【解析】
直線經(jīng)過定點,斜率為,數(shù)形結(jié)合利用直線的斜率公式,求得實數(shù)的取值范圍,得到答案.【詳解】如圖所示,直線經(jīng)過定點,斜率為,當(dāng)直線經(jīng)過點時,則,當(dāng)直線經(jīng)過點時,則,所以實數(shù)的取值范圍,故選C.【點睛】本題主要考查了直線過定點問題,以及直線的斜率公式的應(yīng)用,著重考查了數(shù)形結(jié)合法,以及推理與運算能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)框圖模擬程序運算即可.【詳解】第一次執(zhí)行程序,,,繼續(xù)循環(huán),第二次執(zhí)行程序,,,,繼續(xù)循環(huán),第三次執(zhí)行程序,,,,繼續(xù)循環(huán),第四次執(zhí)行程序,,,,繼續(xù)循環(huán),第五次執(zhí)行程序,,,,跳出循環(huán),輸出,結(jié)束.故選C.【點睛】本題主要考查了程序框圖,涉及循環(huán)結(jié)構(gòu),解題關(guān)鍵注意何時跳出循環(huán),屬于中檔題.8、D【解析】函數(shù)的周期為,四分之一周期為,而函數(shù)的最大值為,故,由余弦定理得,故.9、B【解析】
,當(dāng)且僅當(dāng),即,時的最小值為3.故選B.點睛:本題主要考查基本不等式.在用基本不等式求最值時,應(yīng)具備三個條件:一正二定三相等.①一正:關(guān)系式中,各項均為正數(shù);②二定:關(guān)系式中,含變量的各項的和或積必須有一個為定值;③三相等:含變量的各項均相等,取得最值.10、A【解析】
利用直線的斜率公式,求出當(dāng)直線經(jīng)過點時,直線經(jīng)過點時的斜率,即可得到結(jié)論.【詳解】設(shè)要求直線的斜率為,當(dāng)直線經(jīng)過點時,斜率為,當(dāng)直線經(jīng)過點時,斜率為,故所求直線的斜率為.故選:A.【點睛】本題主要考查直線的斜率公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè),再根據(jù)外接球的直徑與和底面外接圓的一條直徑構(gòu)成直角三角形求解進而求得體積即可.【詳解】設(shè),底面外接圓直徑為.易得底面是邊長為3的等邊三角形.則由正弦定理得.又外接球的直徑與和底面外接圓的一條直徑構(gòu)成直角三角形有.又外接球的表面積為,即.解得.故四面體體積為.故答案為:【點睛】本題主要考查了側(cè)棱垂直于底面的四面體的外接球問題.需要根據(jù)題意建立底面三角形外接圓的直徑和三棱錐的高與外接球直徑的關(guān)系再求解.屬于中檔題.12、【解析】
∵在△ABC中,∠ABC=60°,且AB=5,AC=7,
∴由余弦定理,可得:,
∴整理可得:,解得:BC=8或?3(舍去).考點:1、正弦定理及余弦定理;2、三角形內(nèi)角和定理及兩角和的余弦公式.13、【解析】
根據(jù)遞推關(guān)系式可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求得,得到,進而求得;利用裂項相消法求得結(jié)果.【詳解】由得:數(shù)列是首項為,公差為的等差數(shù)列,即:設(shè)前項和為本題正確結(jié)果:【點睛】本題考查根據(jù)遞推關(guān)系式證明數(shù)列為等差數(shù)列、等差數(shù)列通項的求解、裂項相消法求數(shù)列的前項和;關(guān)鍵是能夠通過通項公式的形式確定采用的求和方法,屬于常考題型.14、①③【解析】
根據(jù)題意,由于,根據(jù)函數(shù)周期為,可知①、若存在,有時,成立;正確,對于②、在區(qū)間上是單調(diào)遞減;因此錯誤,對于③、,函數(shù)的圖象關(guān)于點成中心對稱圖象,成立.對于④、將函數(shù)的圖象向左平移個單位后得到,與的圖象重合錯誤,故答案為①③考點:命題的真假點評:主要是考查了三角函數(shù)的性質(zhì)的運用,屬于基礎(chǔ)題.15、【解析】
本題首先可通過三角恒等變換將函數(shù)化簡為,然后根據(jù)的取值范圍即可得出函數(shù)的值域.【詳解】因為,所以.【點睛】本題考查通過三角恒等變換以及三角函數(shù)性質(zhì)求值域,考查二倍角公式以及兩角和的正弦公式,考查化歸與轉(zhuǎn)化思想,是中檔題.16、.【解析】
由結(jié)論“與方向相同的單位向量為”可求出的坐標(biāo).【詳解】,所以,,故答案為.【點睛】本題考查單位向量坐標(biāo)的計算,考查共線向量的坐標(biāo)運算,充分利用共線單位向量的結(jié)論可簡化計算,考查運算求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1;(2)【解析】
(1)將化簡可得,再由平移變換可得,由在區(qū)間內(nèi)的最大值為,可得的值;(2)解方程,可得所求相交點距離的最小值.【詳解】解:(1)所以,,∴當(dāng)時,即時,函數(shù)取得最大值,∴.(2)根據(jù)題意,令,,∴或,.解得或,.因為,當(dāng)時取等號,∴相鄰交點間距離的最小值是.【點睛】本題主要考查三角函數(shù)的平移變化及三角恒等變換與三角函數(shù)的性質(zhì),屬于中檔題.18、(Ⅰ)a=0.1(Ⅱ)2(Ⅲ)1208g【解析】
(Ⅰ)由頻率分布直方圖的性質(zhì),列出方程,即可求解得值;(Ⅱ)先求出粽子購買量在的頻率,由此能求出這1000名消費者的粽子購買量在的人數(shù);(Ⅲ)由頻率分布直方圖能求出1000名消費者的人均購買粽子購買量【詳解】(Ⅰ)由頻率分布直方圖的性質(zhì),可得(0.0002+0.00055+a+0.0005+0.00025)×400=1,解得a=0.1.(Ⅱ)∵粽子購買量在600g~1400g的頻率為:(0.00055+0.1)×400=0.62,∴這1000名消費者的棕子購買量在600g~1400g的人數(shù)為:0.62×1000=2.(Ⅲ)由頻率分布直方圖得這1000名消費者的人均粽子購買量為:(400×0.0002+800×0.00055+1200×0.1+1600×0.0005+2000×0.00025)×400=1208g.【點睛】本題主要考查了頻率、頻數(shù)、以及頻率分布直方圖的應(yīng)用,其中解答中熟記頻率分布直方圖的性質(zhì)是解答此類問題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.19、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解析】
試題分析:(Ⅰ)在頻率分布直方圖中,由頻率總和即所有矩形面積之和為,可求;(Ⅱ)在頻率分布直方圖中先求出50名受訪職工評分不低于80的頻率為,由頻率與概率關(guān)系可得該部門評分不低于80的概率的估計值為;(Ⅲ)受訪職工評分在[50,60)的有3人,記為,受訪職工評分在[40,50)的有2人,記為,列出從這5人中選出兩人所有基本事件,即可求相應(yīng)的概率.試題解析:(Ⅰ)因為,所以……..4分)(Ⅱ)由所給頻率分布直方圖知,50名受訪職工評分不低于80的頻率為,所以該企業(yè)職工對該部門評分不低于80的概率的估計值為………8分(Ⅲ)受訪職工評分在[50,60)的有:50×0.006×10=3(人),即為;受訪職工評分在[40,50)的有:50×0.004×40=2(人),即為.從這5名受訪職工中隨機抽取2人,所有可能的結(jié)果共有10種,它們是又因為所抽取2人的評分都在[40,50)的結(jié)果有1種,即,故所求的概率為考點:1.頻率分布直方圖;2.概率和頻率的關(guān)系;3.古典概型.【名師點睛】本題考查頻率分布直方圖、概率與頻率關(guān)系、古典概型,屬中檔題;利用頻率分布直方圖解題的時,注意其表達的意義,同時要理解頻率是概率的估計值這一基礎(chǔ)知識;在利用古典概型解題時,要注意列出所有的基本事件,千萬不可出現(xiàn)重、漏的情況.20、(1)證明見詳解;(2).【解析】
(1)先證明平面,再推出面面垂直;(2)由(1)可知即為所求,在三角形中求角即可.【詳解】(1)證明:因為,所以;又為的中點,所以.在直三棱柱中,平面.又因為平面中,所以,因為,所以平面,又因為平面,所以平面平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東松山職業(yè)技術(shù)學(xué)院《人力資源戰(zhàn)略與規(guī)劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東生態(tài)工程職業(yè)學(xué)院《材料表界面》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東青年職業(yè)學(xué)院《抽樣技術(shù)與應(yīng)用(實驗)》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級上冊《3.2.1 代數(shù)式的值》課件與作業(yè)
- 廣東南華工商職業(yè)學(xué)院《比較公共行政學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名幼兒師范??茖W(xué)?!队變好佬g(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名農(nóng)林科技職業(yè)學(xué)院《趣味素描》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東嶺南職業(yè)技術(shù)學(xué)院《馬克思主義政治經(jīng)濟學(xué)原理》2023-2024學(xué)年第一學(xué)期期末試卷
- -業(yè)務(wù)員月工作總結(jié)簡短
- 大學(xué)生公民素質(zhì)教育(南京師范大學(xué))學(xué)習(xí)通測試及答案
- GB/T 37375-2019交通運輸物聯(lián)網(wǎng)標(biāo)識規(guī)則
- 三大構(gòu)成之立體構(gòu)成-課件
- 河南高職單招政策解讀與報名課件
- 體外培育牛黃技術(shù)幻燈3課件
- 護士N2晉級N3職稱評定述職報告PPT課件(帶內(nèi)容)
- 動物、礦物藥分析課件
- 2019-2020學(xué)年江蘇省徐州市九年級(上)期末數(shù)學(xué)試卷(常用)(精品)
- 精選天津高三生物知識點
- 心有靈犀猜詞游戲常備詞匯總結(jié)
- DB22∕T 5006-2018 裝配式路面基層工程技術(shù)標(biāo)準(zhǔn)
- 《士兵突擊》PPT課件(PPT 43頁)
評論
0/150
提交評論