版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆湖北省實(shí)驗(yàn)中學(xué)等六校高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)的最大值是()A. B. C. D.2.已知數(shù)列滿足若,則數(shù)列的第2018項(xiàng)為()A. B. C. D.3.已知,,直線,若直線過線段的中點(diǎn),則()A.-5 B.5 C.-4 D.44.已知a,,若關(guān)于x的不等式的解集為,則()A. B. C. D.5.已知點(diǎn),,若直線過原點(diǎn),且、兩點(diǎn)到直線的距離相等,則直線的方程為()A.或 B.或C.或 D.或6.下列結(jié)論正確的是()A.若則; B.若,則C.若,則 D.若,則;7.若向量,,則點(diǎn)B的坐標(biāo)為()A. B. C. D.8.直線的傾斜角的取值范圍是()A. B. C. D.9.已知扇形的半徑為,面積為,則這個(gè)扇形圓心角的弧度數(shù)為()A. B. C.2 D.410.已知,,,則的最小值是()A. B.4 C.9 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則的取值范圍是____12.在明朝程大位《算術(shù)統(tǒng)宗》中有這樣的一首歌謠:“遠(yuǎn)看巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈”.這首古詩描述的這個(gè)寶塔古稱浮屠,本題說“寶塔一共有七層,每層懸掛的紅燈數(shù)是上一層的2倍,共有381盞燈,問塔頂有幾盞燈?”根據(jù)上述條件,從上往下數(shù)第二層有___________盞燈.13.已知扇形的圓心角為,半徑為5,則扇形的弧長_________.14.在數(shù)列中,,當(dāng)時(shí),.則數(shù)列的前項(xiàng)和是_____.15.已知實(shí)數(shù),滿足不等式組,則的最大值為_______.16.已知樣本數(shù)據(jù)的方差是1,如果有,那么數(shù)據(jù),的方差為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓心在軸的正半軸上,且半徑為2的圓被直線截得的弦長為.(1)求圓的方程;(2)設(shè)動(dòng)直線與圓交于兩點(diǎn),則在軸正半軸上是否存在定點(diǎn),使得直線與直線關(guān)于軸對(duì)稱?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.18.設(shè)有關(guān)于的一元二次方程.(Ⅰ)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.(Ⅱ)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.19.已知,為常數(shù),且,,.(I)若方程有唯一實(shí)數(shù)根,求函數(shù)的解析式.(II)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值.(III)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.20.如圖,在四棱錐中,底面是矩形,底面,是的中點(diǎn),已知,,,求:(1)直線與平面所成角的正切值;(2)三棱錐的體積.21.已知:(,為常數(shù)).(1)若,求的最小正周期;(2)若在,上最大值與最小值之和為3,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
令,再計(jì)算二次函數(shù)定區(qū)間上的最大值。【詳解】令則【點(diǎn)睛】本題考查利用換元法將計(jì)算三角函數(shù)的最值轉(zhuǎn)化為計(jì)算二次函數(shù)定區(qū)間上的最值。屬于基礎(chǔ)題。2、A【解析】
利用數(shù)列遞推式求出前幾項(xiàng),可得數(shù)列是以4為周期的周期數(shù)列,即可得出答案.【詳解】,,,數(shù)列是以4為周期的周期數(shù)列,則.故選A.【點(diǎn)睛】本題考查數(shù)列的遞推公式和周期數(shù)列的應(yīng)用,考查學(xué)生分析解決問題的能力,屬于中檔題.3、B【解析】
根據(jù)題意先求出線段的中點(diǎn),然后代入直線方程求出的值.【詳解】因?yàn)椋?,所以線段的中點(diǎn)為,因?yàn)橹本€過線段的中點(diǎn),所以,解得.故選【點(diǎn)睛】本題考查了直線過某一點(diǎn)求解參量的問題,較為簡單.4、D【解析】
由不等式的解集為R,得的圖象要開口向上,且判別式,即可得到本題答案.【詳解】由不等式的解集為R,得函數(shù)的圖象要滿足開口向上,且與x軸至多有一個(gè)交點(diǎn),即判別式.故選:D【點(diǎn)睛】本題主要考查一元二次不等式恒成立問題.5、A【解析】
分為斜率存在和不存在兩種情況,根據(jù)點(diǎn)到直線的距離公式得到答案.【詳解】當(dāng)斜率不存在時(shí):直線過原點(diǎn),驗(yàn)證滿足條件.當(dāng)斜率存在時(shí):直線過原點(diǎn),設(shè)直線為:即故答案選A【點(diǎn)睛】本題考查了點(diǎn)到直線的距離公式,忽略斜率不存在的情況是容易犯的錯(cuò)誤.6、D【解析】
根據(jù)不等式的性質(zhì),結(jié)合選項(xiàng),進(jìn)行逐一判斷即可.【詳解】因,則當(dāng)時(shí),;當(dāng)時(shí),,故A錯(cuò)誤;因,則或,故B錯(cuò)誤;因,才有,條件不足,故C錯(cuò)誤;因,則,則只能是,故D正確.故選:D.【點(diǎn)睛】本題考查不等式的基本性質(zhì),需要對(duì)不等式的性質(zhì)非常熟練,屬基礎(chǔ)題.7、B【解析】
根據(jù)向量的坐標(biāo)運(yùn)算得到,得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算,意在考查學(xué)生的計(jì)算能力.8、B【解析】
由直線的方程可確定直線的斜率,可得其范圍,進(jìn)而可求傾斜角的取值范圍.【詳解】解:直線的斜率為,,根據(jù)正切函數(shù)的性質(zhì)可得傾斜角的取值范圍是故選:.【點(diǎn)睛】本題考查直線的斜率與傾斜角的關(guān)系,屬于基礎(chǔ)題.9、D【解析】
利用扇形面積,結(jié)合題中數(shù)據(jù),建立關(guān)于圓心角的弧度數(shù)的方程,即可解得.【詳解】解:設(shè)扇形圓心角的弧度數(shù)為,因?yàn)樯刃嗡趫A的半徑為,且該扇形的面積為,則扇形的面積為,解得:.故選:D.【點(diǎn)睛】本題在已知扇形面積和半徑的情況下,求扇形圓心角的弧度數(shù),著重考查了弧度制的定義和扇形面積公式等知識(shí),屬于基礎(chǔ)題.10、C【解析】
利用題設(shè)中的等式,把的表達(dá)式轉(zhuǎn)化成展開后,利用基本不等式求得的最小值.【詳解】∵,,,∴=,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.故選:C.【點(diǎn)睛】本題主要考查了基本不等式求最值,注意一定,二正,三相等的原則,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
分類討論,去掉絕對(duì)值,利用函數(shù)的單調(diào)性,求得函數(shù)各段上的取值,進(jìn)而得到函數(shù)的取值范圍,得到答案.【詳解】由題意,當(dāng)時(shí),函數(shù),此時(shí)函數(shù)為單調(diào)遞減函數(shù),所以最大值為,此時(shí)函數(shù)的取值當(dāng)時(shí),函數(shù),此時(shí)函數(shù)為單調(diào)遞減函數(shù),所以最大值為,最小值,所以函數(shù)的取值為當(dāng)時(shí),函數(shù),此時(shí)函數(shù)為單調(diào)遞增函數(shù),所以最大值為,此時(shí)函數(shù)的取值,綜上可知,函數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查了分段函數(shù)的值域問題,其中解答中合理分類討論去掉絕對(duì)值,利用函數(shù)的單調(diào)性求得各段上的值域是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12、6.【解析】
根據(jù)題意可將問題轉(zhuǎn)化為等比數(shù)列中,已知和,求解的問題;利用等比數(shù)列前項(xiàng)和公式可求得,利用求得結(jié)果.【詳解】由題意可知,每層懸掛的紅燈數(shù)成等比數(shù)列,設(shè)為設(shè)第層懸掛紅燈數(shù)為,向下依次為且即從上往下數(shù)第二層有盞燈本題正確結(jié)果;【點(diǎn)睛】本題考查利用等比數(shù)列前項(xiàng)和求解基本量的問題,屬于基礎(chǔ)題.13、【解析】
根據(jù)扇形的弧長公式進(jìn)行求解即可.【詳解】∵扇形的圓心角α,半徑為r=5,∴扇形的弧長l=rα5.故答案為:.【點(diǎn)睛】本題主要考查扇形的弧長公式的計(jì)算,熟記弧長公式是解決本題的關(guān)鍵,屬于基礎(chǔ)題.14、【解析】
先利用累加法求出數(shù)列的通項(xiàng)公式,然后將數(shù)列的通項(xiàng)裂開,利用裂項(xiàng)求和法求出數(shù)列的前項(xiàng)和.【詳解】當(dāng)時(shí),.所以,,,,,.上述等式全部相加得,.,因此,數(shù)列的前項(xiàng)和為,故答案為:.【點(diǎn)睛】本題考查累加法求數(shù)列通項(xiàng)和裂項(xiàng)法求和,解題時(shí)要注意累加法求通項(xiàng)和裂項(xiàng)法求和對(duì)數(shù)列遞推公式和通項(xiàng)公式的要求,考查運(yùn)算求解能力,屬于中等題.15、2【解析】
作出不等式組表示的平面區(qū)域,根據(jù)目標(biāo)函數(shù)的幾何意義,結(jié)合圖象,即可求解,得到答案.【詳解】由題意,作出不等式組表示的平面區(qū)域,如圖所示,又由,即表示平面區(qū)域內(nèi)任一點(diǎn)與點(diǎn)之間連線的斜率,顯然直線的斜率最大,又由,解得,則,所以的最大值為2.【點(diǎn)睛】本題主要考查簡單線性規(guī)劃求解目標(biāo)函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于基礎(chǔ)題.16、1【解析】
利用方差的性質(zhì)直接求解.【詳解】根據(jù)題意,樣本數(shù)據(jù)的平均數(shù)為,方差是1,則有,對(duì)于數(shù)據(jù),其平均數(shù)為,其方差為,故答案為1.【點(diǎn)睛】本題考查方差的求法,考查方差的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當(dāng)點(diǎn)為時(shí),直線與直線關(guān)于軸對(duì)稱,詳見解析【解析】
(1)設(shè)圓的方程為,由垂徑定理求得弦長,再由弦長為可求得,從而得圓的方程;(2)假設(shè)存在定點(diǎn),使得直線與直線關(guān)于軸對(duì)稱,則,同時(shí)設(shè),直線方程代入圓方程后用韋達(dá)定理得,即為,代入可求得,說明存在.【詳解】(1)設(shè)圓的方程為:圓心到直線的距離根據(jù)垂徑定理得,,解得,,故圓的方程為(2)假設(shè)存在定點(diǎn),使得直線與直線關(guān)于軸對(duì)稱,那么,設(shè)聯(lián)立得:由.故存在,當(dāng)點(diǎn)為時(shí),直線與直線關(guān)于軸對(duì)稱.【點(diǎn)睛】本題考查圓的標(biāo)準(zhǔn)方程,考查直線與圓的位置關(guān)系.在解決存在性命題時(shí),一般都是假設(shè)存在,然后根據(jù)已知去推理求解.象本題定點(diǎn)問題,就是假設(shè)存在定點(diǎn),用設(shè)而不求法推理求解,解出值,如不能解出值,說明不存在.18、(Ⅰ)(Ⅱ)【解析】
(1)本題是一個(gè)古典概型,可知基本事件共12個(gè),方程當(dāng)時(shí)有實(shí)根的充要條件為,滿足條件的事件中包含9個(gè)基本事件,由古典概型公式得到事件發(fā)生的概率.(2)本題是一個(gè)幾何概型,試驗(yàn)的全部約束所構(gòu)成的區(qū)域?yàn)?,.?gòu)成事件的區(qū)域?yàn)椋?,.根?jù)幾何概型公式得到結(jié)果.【詳解】解:設(shè)事件為“方程有實(shí)數(shù)根”.當(dāng)時(shí),方程有實(shí)數(shù)根的充要條件為.(Ⅰ)基本事件共12個(gè):.其中第一個(gè)數(shù)表示的取值,第二個(gè)數(shù)表示的取值.事件中包含9個(gè)基本事件,事件發(fā)生的概率為.(Ⅱ)實(shí)驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)椋畼?gòu)成事件的區(qū)域?yàn)?,所求的概率為【點(diǎn)睛】本題考查幾何概型和古典概型,放在一起的目的是把兩種概型加以比較,屬于基礎(chǔ)題.19、(I);(II);;(III).【解析】
(I)根據(jù)方程ax2+(b-1)x=0有唯一解,以及列方程求解即可;(II)根據(jù)二次函數(shù)的性質(zhì),函數(shù)的單調(diào)性,即可求得求得最值,(III)分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值即可.【詳解】∵,∴,∴.(I)方程有唯一實(shí)數(shù)根,即方程有唯一解,∴,解得∴(II)∵,∴,,若,若.(III)解法一、當(dāng)時(shí),不等式恒成立,即:在區(qū)間上恒成立,設(shè),顯然函數(shù)在區(qū)間上是減函數(shù),,當(dāng)且僅當(dāng)時(shí),不等式在區(qū)間上恒成立,因此.解法二:因?yàn)楫?dāng)時(shí),不等式恒成立,所以時(shí),的最小值,當(dāng)時(shí),在單調(diào)遞減,恒成立,而,所以時(shí)不符合題意.當(dāng)時(shí),在單調(diào)遞增,的最小值為,所以,即即可,綜上所述,.20、(1);(2)【解析】
(1)要求直線與平面所成角的正切值,先要找到直線在平面上的射影,即在直線上找一點(diǎn)作平面的垂線,結(jié)合已知與圖形,轉(zhuǎn)化為證明平面再求解;(2)三棱錐的體積計(jì)算在于選取合適的底和高,此題以為底,與的中點(diǎn)的連線為高計(jì)算更為快速,從而轉(zhuǎn)化為證明平面再求解.【詳解】(1)平面,平面又,,平面,平面所以平面,所以為直線與平面所成角。易證是一個(gè)直角三角形,所以.(2)如圖,設(shè)的中點(diǎn)為,則,平面,平面,又,,,又,,,所以平面,所以為三棱錐的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 多維度數(shù)據(jù)洞察-深度研究
- 時(shí)間序列數(shù)據(jù)的時(shí)空分析-深度研究
- 農(nóng)村污水排放標(biāo)準(zhǔn)探討-深度研究
- 數(shù)據(jù)保護(hù)與隱私權(quán)平衡-深度研究
- 建筑能耗分析與控制-深度研究
- 大數(shù)據(jù)驅(qū)動(dòng)促銷策略-深度研究
- 數(shù)學(xué)金融工程研究-深度研究
- 2025年廣東松山職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年山東鋁業(yè)職業(yè)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 2025年山東力明科技職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 銷售與銷售目標(biāo)管理制度
- 人教版(2025新版)七年級(jí)下冊(cè)英語:寒假課內(nèi)預(yù)習(xí)重點(diǎn)知識(shí)默寫練習(xí)
- 2024年食品行業(yè)員工勞動(dòng)合同標(biāo)準(zhǔn)文本
- 全屋整裝售后保修合同模板
- 高中生物學(xué)科學(xué)推理能力測試
- GB/T 44423-2024近紅外腦功能康復(fù)評(píng)估設(shè)備通用要求
- 六年級(jí)上冊(cè)數(shù)學(xué)應(yīng)用題練習(xí)100題及答案
- 死亡報(bào)告年終分析報(bào)告
- 棋牌室禁止賭博警示語
- 2022-2023學(xué)年四川省南充市九年級(jí)(上)期末數(shù)學(xué)試卷
- 公轉(zhuǎn)私人轉(zhuǎn)賬協(xié)議
評(píng)論
0/150
提交評(píng)論