版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山西省晉中市榆社縣2025屆數(shù)學(xué)高一下期末聯(lián)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的零點所在的區(qū)間是()A. B. C. D.2.某單位共有老年人180人,中年人540人,青年人a人,為調(diào)查身體健康狀況,需要從中抽取一個容量為m的樣本,用分層抽樣方法抽取進行調(diào)查,樣本中的中年人為6人,則a和m的值不可以是下列四個選項中的哪組()A.a(chǎn)=810,m=17 B.a(chǎn)=450,m=14C.a(chǎn)=720,m=16 D.a(chǎn)=360,m=123.設(shè)、、為平面,為、、直線,則下列判斷正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則4.已知正數(shù)滿足,則的最小值是()A.9 B.10 C.11 D.125.取一根長度為的繩子,拉直后在任意位置剪斷,則剪得兩段繩有一段長度不小于的概率是()A. B. C. D.6.在中,角,,的對邊分別為,,,且.則()A. B.或 C. D.7.下列四個函數(shù)中,與函數(shù)完全相同的是()A. B.C. D.8.已知,則向量在方向上的投影為()A. B. C. D.9.甲、乙兩名選手參加歌手大賽時,5名評委打的分?jǐn)?shù)用如圖所示的莖葉圖表示,s1,s2分別表示甲、乙選手分?jǐn)?shù)的標(biāo)準(zhǔn)差,則s1與s2的關(guān)系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不確定10.若()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的前n項和為,,且(),記(),若對恒成立,則的最小值為__.12.把正整數(shù)排列成如圖甲所示的三角形數(shù)陣,然后擦去偶數(shù)行中的奇數(shù)和奇數(shù)行中的偶數(shù),得到如圖乙所示的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個數(shù)列,若,則________________.13.已知數(shù)列的前n項和,則數(shù)列的通項公式是______.14.?dāng)?shù)列中,已知,50為第________項.15.不等式的解集為_____________________。16.如圖,在中,,是邊上一點,,則.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知長方體中,,點N是AB的中點,點M是的中點.建立如圖所示的空間直角坐標(biāo)系.(1)寫出點的坐標(biāo);(2)求線段的長度;(3)判斷直線與直線是否互相垂直,說明理由.18.如圖,求陰影部分繞旋轉(zhuǎn)一周所形成的幾何體的表面積和體積.19.已知以點(a∈R,且a≠0)為圓心的圓過坐標(biāo)原點O,且與x軸交于點A,與y軸交于點B.(1)求△OAB的面積;(2)設(shè)直線l:y=﹣2x+4與圓C交于點P、Q,若|OP|=|OQ|,求圓心C到直線l的距離.20.已知.(1)若三點共線,求的關(guān)系;(2)若,求點的坐標(biāo).21.在中,內(nèi)角A,B,C的對邊分別為a,b,c,已知.求A;已知,的面積為的周長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)零點存在性定理即可求解.【詳解】由函數(shù),則,,故函數(shù)的零點在區(qū)間上.故選:B【點睛】本題考查了利用零點存在性定理判斷零點所在的區(qū)間,需熟記定理內(nèi)容,屬于基礎(chǔ)題.2、B【解析】
根據(jù)分層抽樣的規(guī)律,計算a和m的關(guān)系為:8+a【詳解】某單位共有老年人180人,中年人540人,青年人a人,樣本中的中年人為6人,則老年人為:180×6540=22+6+代入選項計算,B不符合故答案為B【點睛】本題考查了分層抽樣,意在考查學(xué)生的計算能力.3、D【解析】
根據(jù)線面、面面有關(guān)的定理,對四個選項逐一分析,由此得出正確選項.【詳解】A選項不正確,因為根據(jù)面面垂直的性質(zhì)定理,需要加上:在平面內(nèi)或者平行于,這個條件,才能判定.B選項不正確,因為可能平行于.C選項不正確,因為當(dāng)時,或者.D選項正確,根據(jù)垂直于同一條直線的兩個平面平行,得到,直線,則可得到.綜上所述,本小題選D.【點睛】本小題主要考查空間線面、面面位置關(guān)系有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.4、A【解析】
利用基本不等式可得,然后解出即可.【詳解】解:正數(shù),滿足,∴,,,當(dāng)且僅當(dāng)時取等號,的最小值為9,故選:A.【點睛】本題主要考查基本不等式的應(yīng)用和一元二次不等式的解法,屬于基礎(chǔ)題.5、A【解析】
設(shè)其中一段的長度為,可得出另一段長度為,根據(jù)題意得出的取值范圍,再利用幾何概型的概率公式可得出所求事件的概率.【詳解】設(shè)其中一段的長度為,可得出另一段長度為,由于剪得兩段繩有一段長度不小于,則或,可得或.由于,所以,或.由幾何概型的概率公式可知,事件“剪得兩段繩有一段長度不小于”的概率為,故選:A.【點睛】本題考查長度型幾何概型概率公式的應(yīng)用,解題時要將問題轉(zhuǎn)化為區(qū)間型的幾何概型來計算概率,考查分析問題以及運算求解能力,屬于中等題.6、A【解析】
利用余弦定理和正弦定理化簡已知條件,求得的值,即而求得的大小.【詳解】由于,所以,由余弦定理和正弦定理得,即,由于是三角形的內(nèi)角,所以為正數(shù),所以,為三角形的內(nèi)角,所以.故選:A【點睛】本小題主要考查正弦定理和余弦定理邊角互化,考查三角形的內(nèi)角和定理,考查兩角和的正弦公式,屬于基礎(chǔ)題.7、C【解析】
先判斷函數(shù)的定義域是否相同,再通過化簡判斷對應(yīng)關(guān)系是否相同,從而判斷出與相同的函數(shù).【詳解】的定義域為,A.,因為,所以,定義域為或,與定義域不相同;B.,因為,所以,所以定義域為,與定義域不相同;C.,因為,所以定義域為,又因為,所以與相同;D.,因為,所以,定義域為,與定義域不相同.故選:C.【點睛】本題考查與三角函數(shù)有關(guān)的相同函數(shù)的判斷,難度一般.判斷相同函數(shù)時,首先判斷定義域是否相同,定義域相同時再去判斷對應(yīng)關(guān)系是否相同(函數(shù)化簡),結(jié)合定義域與對應(yīng)關(guān)系即可判斷出是否是相同函數(shù).8、B【解析】
根據(jù)向量夾角公式求得夾角的余弦值;根據(jù)所求投影為求得結(jié)果.【詳解】由題意得:向量在方向上的投影為:本題正確選項:【點睛】本題考查向量在方向上的投影的求解問題,關(guān)鍵是能夠利用向量數(shù)量積求得向量夾角的余弦值.9、C【解析】
先求均值,再根據(jù)標(biāo)準(zhǔn)差公式求標(biāo)準(zhǔn)差,最后比較大小.【詳解】乙選手分?jǐn)?shù)的平均數(shù)分別為所以標(biāo)準(zhǔn)差分別為因此s1<s2,選C.【點睛】本題考查標(biāo)準(zhǔn)差,考查基本求解能力.10、D【解析】故.【考點定位】本題主要考查基本不等式的應(yīng)用及指數(shù)不等式的解法,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
,即為首項為,公差為的等差數(shù)列,,,,由得,因為或時,有最大值,,即的最小值為,故答案為.【方法點晴】裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,掌握一些常見的裂項技巧:①;②;③;④;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.12、【解析】
由圖乙可得:第行有個數(shù),且第行最后的一個數(shù)為,從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,注意到,,據(jù)此確定n的值即可.【詳解】分析圖乙,可得①第行有個數(shù),則前行共有個數(shù),②第行最后的一個數(shù)為,③從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,又由,,則,則出現(xiàn)在第行,第行第一個數(shù)為,這行中第個數(shù)為,前行共有個數(shù),則為第個數(shù).故填.【點睛】歸納推理是由部分到整體、由特殊到一般的推理,由歸納推理所得的結(jié)論不一定正確,通常歸納的個體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法.13、【解析】
時,,利用時,可得,最后驗證是否滿足上式,不滿足時候,要寫成分段函數(shù)的形式.【詳解】當(dāng)時,,當(dāng)時,=,又時,不適合,所以.【點睛】本題考查了由求,注意使用求時的條件是,所以求出后還要驗證適不適合,如果適合,要將兩種情況合成一種情況作答,如果不適合,要用分段函數(shù)的形式作答.屬于中檔題.14、4【解析】
方程變?yōu)?,設(shè),解關(guān)于的二次方程可求得?!驹斀狻浚瑒t,即設(shè),則,有或取得,,所以是第4項?!军c睛】發(fā)現(xiàn),原方程可通過換元,變?yōu)殛P(guān)于的一個二次方程。對于指數(shù)結(jié)構(gòu),,等,都可以通過換元變?yōu)槎涡问窖芯俊?5、或【解析】
利用一元二次函數(shù)的圖象或轉(zhuǎn)化為一元一次不等式組解一元二次不等式.【詳解】由,或,所以或,不等式的解集為或.【點睛】本題考查解一元二次不等式,考查計算能力,屬于基本題.16、【解析】
由圖及題意得
,
=
∴
=(
)(
)=
+
=
=
.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,;(2)線段的長度分別為;(3)不垂直,理由見解析【解析】
(1)由已知條件,利用長方體的結(jié)構(gòu)特征,能求出點的坐標(biāo).
(2)直接利用兩點間距離公式公式求解.(3)求出,,計算數(shù)量積即可判斷是否垂直.【詳解】解:(1)兩直線垂直,證明:由于為坐標(biāo)原點,所以,由得:,因為點N是AB的中點,點M是的中點,,;(2)由兩點距離公式得:,;(3)直線與直線不垂直,理由:由(1)中各點坐標(biāo)得:,,與不垂直,所以直線與直線不垂直.【點睛】本題考查空間中點的坐標(biāo)的求法,考查線段長的求法,以及利用向量的坐標(biāo)運算判斷垂直,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).18、,【解析】
由圖形知旋轉(zhuǎn)后的幾何體是一個圓臺,從上面挖去一個半球后剩余部分,根據(jù)圖形中的數(shù)據(jù)可求出其表面積和體積.【詳解】由題意知,所求旋轉(zhuǎn)體的表面積由三部分組成:圓臺下底面、側(cè)面和一個半球面,而半球面的表面積,圓臺的底面積,圓臺的側(cè)面積,所以所求幾何體的表面積;圓臺的體積,半球的體積,所以,旋轉(zhuǎn)體的體積為,故得解.【點睛】本題考查組合體的表面積、體積,還考查了空間想象能力,能想象出旋轉(zhuǎn)后的旋轉(zhuǎn)體的構(gòu)成是本題的關(guān)鍵,屬于中檔題.19、(1)4(2)【解析】
(1)求得圓的半徑,設(shè)出圓的標(biāo)準(zhǔn)方程,由此求得兩點坐標(biāo),進而求得三角形的面積.(2)根據(jù),判斷出,由直線的斜率求得直線的斜率,以此列方程求得,根據(jù)直線和圓相交,圓心到直線的距離小于半徑,確定,同時得到圓心到直線的距離.【詳解】(1)根據(jù)題意,以點(a∈R,且a≠0)為圓心的圓過坐標(biāo)原點O,設(shè)圓C的半徑為r,則r2=a2,圓C的方程為(x﹣a)2+(y)2=a2,令x=0可得:y=0或,則B(0,),令y=0可得:x=0或2a,則A(2a,0),△OAB的面積S|2a|×||=4;(2)根據(jù)題意,直線l:y=﹣2x+4與圓C交于點P、Q,則|CP|=|CQ|,又由|OP|=|OQ|,則直線OC與PQ垂直,又由直線l即PQ的方程為y=﹣2x+4,則KOC,解可得a=±2,當(dāng)a=2時,圓心C的坐標(biāo)為(2,1),圓心到直線l的距離d,r,r>d,此時直線l與圓相交,符合題意;當(dāng)a=2時,圓心C的坐標(biāo)為(﹣2,﹣1),圓心到直線l的距離d,r,r<d,此時直線l與圓相離,不符合題意;故圓心C到直線l的距離d.【點睛】本小題主要考查圓的標(biāo)準(zhǔn)方程,考查直線和圓的位置關(guān)系,考查兩條直線的位置關(guān)系,考查運算求解能力,屬于中檔題.20、(1)a+b=2;(2)(5,-3).【解析】
(1)求出和的坐標(biāo),然后根據(jù)兩向量共線的等價條件可得所求關(guān)系式.(2)求出的坐標(biāo),根據(jù)得到關(guān)于的方程組,解方程組可得所求點的坐標(biāo).【詳解】由題意知,,.(1)∵三點共線,∴∥,∴,∴.(2)∵,∴,∴,解得,∴點的坐標(biāo)為.【點睛】本題考查向量共線的應(yīng)用,解題的關(guān)鍵是把共線表示為向量的坐標(biāo)的形式,進而轉(zhuǎn)化為數(shù)的運算的問題,屬于基礎(chǔ)題.21、(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024秋七年級英語上冊 Unit 4 Food and Restaurants Lesson 23 The Corner Store說課稿 (新版)冀教版
- 《6的乘法口訣》(說課稿)-2024-2025學(xué)年二年級上冊數(shù)學(xué)青島版
- 2023三年級英語下冊 Unit 2 I'm in Class One Grade Three Lesson 7說課稿 人教精通版(三起)
- 《2 我們的課余生活》(說課稿)-2023-2024學(xué)年四年級上冊綜合實踐活動吉美版001
- Unit 2 Different Families 第1課時(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 60米短跑 說課稿-2023-2024學(xué)年高三上學(xué)期體育與健康人教版必修第一冊
- 2025關(guān)于質(zhì)押反擔(dān)保合同
- Unit 2 Healthy Lifestyle Using language Listening and Speaking 說課稿-2023-2024學(xué)年高中英語人教版(2019)選擇性必修第三冊
- 長沙打包箱房施工方案
- 2024-2025學(xué)年高中歷史 第五單元 無產(chǎn)階級革命家 第2課 無產(chǎn)階級革命導(dǎo)師恩格斯教學(xué)說課稿 新人教版選修4
- 心電監(jiān)護考核標(biāo)準(zhǔn)
- 特種行業(yè)許可證申請表
- 古典芭蕾:基本技巧和術(shù)語
- 有限空間作業(yè)審批表
- 內(nèi)地居民前往香港或者澳門定居申請表
- DB43-T 2612-2023林下竹蓀栽培技術(shù)規(guī)程
- 三下《動物的一生》教材解讀
- 神木市孫家岔鎮(zhèn)神能乾安煤礦礦山地質(zhì)環(huán)境保護與土地復(fù)墾方案
- 非煤礦山安全應(yīng)急預(yù)案
- 浙江省公安民警心理測驗考試題目
- 一圖看懂《診所備案管理暫行辦法》學(xué)習(xí)解讀課件
評論
0/150
提交評論