版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省珠海一中2025屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則的值為()A. B. C. D.2.設(shè),則()A. B. C. D.3.如圖,在長方體中,M,N分別是棱BB1,B1C1的中點,若∠CMN=90°,則異面直線AD1和DM所成角為()A.30° B.45°C.60° D.90°4.已知,向量,則向量()A. B. C. D.5.已知,則()A. B. C. D.6.甲、乙兩名運動員分別進行了5次射擊訓(xùn)練,成績?nèi)缦拢杭祝?,7,8,8,1;乙:8,9,9,9,1.若甲、乙兩名運動員的平均成績分別用,表示,方差分別用,表示,則()A., B.,C., D.,7.對一切,恒成立,則實數(shù)的取值范圍是()A. B.C. D.8.若兩個球的半徑之比為,則這兩球的體積之比為()A. B. C. D.9.如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù),從中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為()A. B. C. D.10.若關(guān)于的方程有且只有兩個不同的實數(shù)根,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,是第三象限角,則.12.已知當(dāng)時,函數(shù)(且)取得最大值,則時,的值為__________.13.函數(shù)的定義域記作集合,隨機地投擲一枚質(zhì)地均勻的正方體骰子(骰子的每個面上分別標(biāo)有點數(shù),,,),記骰子向上的點數(shù)為,則事件“”的概率為________.14.方程的解集是____________.15.已知扇形的圓心角,扇形的面積為,則該扇形的弧長的值是______.16.將無限循環(huán)小數(shù)化為分數(shù),則所得最簡分數(shù)為______;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列的前項的和為,,.(1)求數(shù)列的通項公式;(2)設(shè),記數(shù)列的前項和為,求.18.求過三點的圓的方程,并求這個圓的半徑和圓心坐標(biāo).19.已知函數(shù)滿足.(1)若,對任意都有,求的取值范圍;(2)是否存在實數(shù),,使得不等式對一切實數(shù)恒成立?若存在,請求出,,使;若不存在,請說明理由.20.為了了解高一學(xué)生的體能狀況,某校抽取部分學(xué)生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.(1)求第二小組的頻率;(2)求樣本容量;(3)若次數(shù)在110以上為達標(biāo),試估計全體高一學(xué)生的達標(biāo)率為多少?21.已知是定義域為R的奇函數(shù),當(dāng)時,.Ⅰ求函數(shù)的單調(diào)遞增區(qū)間;Ⅱ,函數(shù)零點的個數(shù)為,求函數(shù)的解析式.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】sin(π+α)?3cos(2π?α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②聯(lián)立解得:cos2α=.∴cos2α=2cos2α?1=.故選B.2、D【解析】
由得,再計算即可.【詳解】,,所以故選D【點睛】本題考查了以數(shù)列的通項公式為載體求比值的問題,以及歸納推理的應(yīng)用,屬于基礎(chǔ)題.3、D【解析】
建立空間直角坐標(biāo)系,結(jié)合,求出的坐標(biāo),利用向量夾角公式可求.【詳解】以為坐標(biāo)原點,所在直線分別為軸,建立空間直角坐標(biāo)系,如圖,設(shè),則,,,因為,所以,即有.因為,所以,即異面直線和所成角為.故選:D.【點睛】本題主要考查異面直線所成角的求解,異面直線所成角主要利用幾何法和向量法,幾何法側(cè)重于把異面直線所成角平移到同一個三角形內(nèi),結(jié)合三角形知識求解;向量法側(cè)重于構(gòu)建坐標(biāo)系,利用向量夾角公式求解.4、A【解析】
由向量減法法則計算.【詳解】.故選A.【點睛】本題考查向量的減法法則,屬于基礎(chǔ)題.5、A【解析】分析:利用余弦的二倍角公式可得,進而利用同角三角基本關(guān)系,使其除以,轉(zhuǎn)化成正切,然后把的值代入即可.詳解:由題意得.∵∴故選A.點睛:本題主要考查了同角三角函數(shù)的基本關(guān)系和二倍角的余弦函數(shù)的公式.解題的關(guān)鍵是利用同角三角函數(shù)中的平方關(guān)系,完成了弦切的互化.6、D【解析】
分別計算出他們的平均數(shù)和方差,比較即得解.【詳解】由題意可得,,,.故,.故選D【點睛】本題主要考查平均數(shù)和方差的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.7、B【解析】
先求得的取值范圍,根據(jù)恒成立問題的求解策略,將原不等式轉(zhuǎn)化為,再解一元二次不等式求得的取值范圍.【詳解】解:對一切,恒成立,轉(zhuǎn)化為:的最大值,又知,的最大值為;所以,解得或.故選B.【點睛】本小題主要考查恒成立問題的求解策略,考查三角函數(shù)求最值的方法,考查一元二次不等式的解法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.8、C【解析】
根據(jù)球的體積公式可知兩球體積比為,進而得到結(jié)果.【詳解】由球的體積公式知:兩球的體積之比故選:【點睛】本題考查球的體積公式的應(yīng)用,屬于基礎(chǔ)題.9、C【解析】
試題分析:從中任取3個不同的數(shù)共有10種不同的取法,其中的勾股數(shù)只有3,4,5,故3個數(shù)構(gòu)成一組勾股數(shù)的取法只有1種,故所求概率為,故選C.考點:古典概型10、B【解析】
方程化為,可轉(zhuǎn)化為半圓與直線有兩個不同交點,作圖后易得.【詳解】由得由題意半圓與直線有兩個不同交點,直線過定點,作出半圓與直線,如圖,當(dāng)直線過時,,,當(dāng)直線與半圓相切(位置)時,由,解得.所以的取值范圍是.故選:B.【點睛】本題考查方程根的個數(shù)問題,把問題轉(zhuǎn)化為直線與半圓有兩個交點后利用數(shù)形結(jié)合思想可以方便求解.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】試題分析:根據(jù)同角三角函數(shù)的基本關(guān)系知,,化簡整理得①,又因為②,聯(lián)立方程①②即可解得:,,又因為是第三象限角,所以,故.考點:同角三角函數(shù)的基本關(guān)系.12、3【解析】
先將函數(shù)的解析式利用降冪公式化為,再利用輔助角公式化為,其中,由題意可知與的關(guān)系,結(jié)合誘導(dǎo)公式以及求出的值.【詳解】,其中,當(dāng)時,函數(shù)取得最大值,則,,所以,,解得,故答案為.【點睛】本題考查三角函數(shù)最值,解題時首先應(yīng)該利用降冪公式、和差角公式進行化簡,再利用輔助角公式化簡為的形式,本題中用到了與之間的關(guān)系,結(jié)合誘導(dǎo)公式進行求解,考查計算能力,屬于中等題.13、【解析】要使函數(shù)有意義,則且,即且,即,隨機地投擲一枚質(zhì)地均勻的正方體骰子,記骰子向上的點數(shù)為,則,則事件“”的概率為.14、【解析】
由方程可得或,然后分別解出規(guī)定范圍內(nèi)的解即可.【詳解】因為所以或由得或因為,所以由得因為,所以綜上:解集是故答案為:【點睛】方程的等價轉(zhuǎn)化為或,不要把遺漏了.15、【解析】
先結(jié)合求出,再由求解即可【詳解】由,則故答案為:【點睛】本題考查扇形的弧長和面積公式的使用,屬于基礎(chǔ)題16、【解析】
將設(shè)為,考慮即為,兩式相減構(gòu)造方程即可求解出的值,即可得到對應(yīng)的最簡分數(shù).【詳解】設(shè),則,由可知,解得.故答案為:.【點睛】本題考查將無限循環(huán)小數(shù)化為最簡分數(shù),主要采用方程的思想去計算,難度較易.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)數(shù)列的通項公式為(2)【解析】試題分析:(1)建立方程組;(2)由(1)得:進而由裂項相消法求得.試題解析:(1)設(shè)等差數(shù)列的公差為,由題意知解得.所以數(shù)列的通項公式為(2)∴18、(x﹣4)2+(y+3)2=21,圓的半徑為【解析】
設(shè)出圓的一般方程,把代入所設(shè),得到關(guān)于的方程組,求解,即可求得圓的一般方程,化為標(biāo)準(zhǔn)方程,進一步求得圓心坐標(biāo)與半徑.【詳解】設(shè)圓的方程為:x2+y2+Dx+Ey+F=0,則,解得D=﹣4,E=3,F(xiàn)=0,∴圓的方程為x2+y2﹣8x+6y=0,化為(x﹣4)2+(y+3)2=21,可得:圓心是(4,﹣3)、半徑r=1.【點睛】本題主要考查圓的方程和性質(zhì),屬于簡單題.求圓的方程常見思路與方法有:①直接設(shè)出動點坐標(biāo),根據(jù)題意列出關(guān)于的方程即可;②根據(jù)幾何意義直接找到圓心坐標(biāo)和半徑,寫出方程;③待定系數(shù)法,可以根據(jù)題意設(shè)出圓的標(biāo)準(zhǔn)方程或一般式方程,再根據(jù)所給條件求出參數(shù)即可.19、(1)(2)存在,使不等式恒成立,詳見解析.【解析】
(1)由知函數(shù)關(guān)于對稱,求出后,通過構(gòu)造函數(shù)求出;(2)利用不等式的兩邊夾定理,令,得,結(jié)合已知條件,解出;然后設(shè)存在實數(shù),,命題成立,運用根的判別式建立關(guān)于實數(shù)的不等式組,解得.【詳解】(1)由得此時,,構(gòu)造函數(shù),.即的取值范圍是.(2)由對一切實數(shù)恒成立,得由得由得恒成立,也即,此時,.把,.代入,不等式也恒成立,所以,.【點睛】本題第(1)問,常用“反客為主法”,即把參數(shù)當(dāng)成主元,而把看成參數(shù);第(2)問,不等式對任意實數(shù)恒成立,常用賦值法切入問題.20、(1);(2);(3)%【解析】
(1)由于每個長方形的面積即為本組的頻率,設(shè)第二小組的頻率為4,則解得第二小組的頻率為(2)設(shè)樣本容量為,則(3)由(1)和直方圖可知,次數(shù)在110以上的頻率為由此估計全體高一學(xué)生的達標(biāo)率為%21、Ⅰ見解析;(Ⅱ)【解析】
Ⅰ利用函數(shù)的奇偶性,利用對稱性,寫出函數(shù)的解析式;然后求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度山西省高校教師資格證之高等教育心理學(xué)題庫檢測試卷B卷附答案
- 2023年激光診斷設(shè)備資金籌措計劃書
- 福建省泉州市高一上學(xué)期期末英語試題與參考答案
- 小學(xué)幼兒園智慧監(jiān)控系統(tǒng)方案建議書
- 2024奶牛養(yǎng)殖基地施工承包協(xié)議
- 2024暑期工勤工儉學(xué)勞動協(xié)議示例
- 2024年借款居間協(xié)議格式樣本
- 2024年度采石場租賃運營權(quán)轉(zhuǎn)移協(xié)議
- 2024陶瓷燒制加工承攬協(xié)議
- 2024專業(yè)居間服務(wù)借款協(xié)議范本
- 外貿(mào)報關(guān)用發(fā)票、裝箱單、合同、報關(guān)單模板
- 液壓技術(shù)與氣動技術(shù)課程設(shè)計
- 建設(shè)項目全過程工程咨詢管理實施規(guī)劃
- 部編版小學(xué)語文四年級上冊習(xí)作七《寫信》PPT教學(xué)講座課件
- EN10130-2006冷成形用低碳鋼冷軋鋼板和鋼帶交貨技術(shù)條件
- 山東省產(chǎn)前篩查與診斷管理辦法實施細則
- 機械基礎(chǔ)軸上零件軸向固定公開課課件
- 管線工程測量施工方案(雨污分流管網(wǎng)工程)
- 上海鏈家房地產(chǎn)經(jīng)紀公司人員激勵機制存在的問題與對策分析
- 醫(yī)院基本建設(shè)存在的問題及對策
- 農(nóng)機修理工培訓(xùn)大綱
評論
0/150
提交評論