版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省延邊朝鮮族自治州汪清四中2024屆數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.P是直線x+y+2=0上任意一點(diǎn),點(diǎn)Q在圓x-22+yA.2 B.4-2 C.4+22.如圖,兩個(gè)正方形和所在平面互相垂直,設(shè)、分別是和的中點(diǎn),那么:①;②平面;③;④、異面.其中不正確的序號(hào)是()A.① B.② C.③ D.④3.已知平面向量滿足:,,,若,則的值為()A. B. C.1 D.-14.若樣本數(shù)據(jù),,…,的方差為2,則數(shù)據(jù),,…,的方差為()A.4 B.8 C.16 D.325.某校高一甲、乙兩位同學(xué)的九科成績(jī)?nèi)缜o葉圖所示,則下列說(shuō)法正確的是()A.甲、乙兩人的各科平均分不同 B.甲、乙兩人的中位數(shù)相同C.甲各科成績(jī)比乙各科成績(jī)穩(wěn)定 D.甲的眾數(shù)是83,乙的眾數(shù)為876.函數(shù)的圖像的一條對(duì)稱軸是()A. B. C. D.7.已知A={第一象限角},B={銳角},C={小于90°的角},那么A、B、C關(guān)系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C8.已知正四棱錐的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為,則該正四棱錐的體積為()A. B. C. D.9.已知數(shù)列是公比為2的等比數(shù)列,滿足,設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.34B.39C.51D.6810.在長(zhǎng)方體中,,,則異面直線與所成角的余弦值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.空間一點(diǎn)到坐標(biāo)原點(diǎn)的距離是_______.12.已知圓柱的底面圓的半徑為2,高為3,則該圓柱的側(cè)面積為_(kāi)_______.13.若存在實(shí)數(shù)使得關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍是____.14.把“五進(jìn)制”數(shù)轉(zhuǎn)化為“十進(jìn)制”數(shù)是_____________15.省農(nóng)科站要檢測(cè)某品牌種子的發(fā)芽率,計(jì)劃采用隨機(jī)數(shù)表法從該品牌粒種子中抽取粒進(jìn)行檢測(cè),現(xiàn)將這粒種子編號(hào)如下,,,,若從隨機(jī)數(shù)表第行第列的數(shù)開(kāi)始向右讀,則所抽取的第粒種子的編號(hào)是.(下表是隨機(jī)數(shù)表第行至第行)84421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238793321123429786456078252420744381551001342996602795416.走時(shí)精確的鐘表,中午時(shí),分針與時(shí)針重合于表面上的位置,則當(dāng)下一次分針與時(shí)針重合時(shí),時(shí)針轉(zhuǎn)過(guò)的弧度數(shù)的絕對(duì)值等于_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,已知平面平行于三棱錐的底面,等邊所在的平面與底面垂直,且,設(shè)(1)求證:且;(2)求二面角的余弦值.18.自變量在什么范圍取值時(shí),函數(shù)的值等于0?大于0呢?小于0呢?19.已知等比數(shù)列是遞增數(shù)列,且滿足:,.(1)求數(shù)列的通項(xiàng)公式:(2)設(shè),求數(shù)列的前項(xiàng)和.20.已知數(shù)列和中,數(shù)列的前n項(xiàng)和為,若點(diǎn)在函數(shù)的圖象上,點(diǎn)在函數(shù)的圖象上.設(shè)數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和;(3)求數(shù)列的最大值.21.定義:對(duì)于任意,滿足條件且(是與無(wú)關(guān)的常數(shù))的無(wú)窮數(shù)列稱為數(shù)列.(1)若,證明:數(shù)列是數(shù)列;(2)設(shè)數(shù)列的通項(xiàng)為,且數(shù)列是數(shù)列,求常數(shù)的取值范圍;(3)設(shè)數(shù)列,若數(shù)列是數(shù)列,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
首先求出圓心到直線的距離與半徑比較大小,得到直線與圓是相離的,根據(jù)圓上的點(diǎn)到直線的距離的最小值等于圓心到直線的距離減半徑,求得結(jié)果.【詳解】因?yàn)閳A心(2,0)到直線x+y+2=0的距離為d=2+0+2所以直線x+y+2=0與圓(x-2)2所以PQ的最小值等于圓心到直線的距離減去半徑,即PQmin故選D.【點(diǎn)睛】該題考查的是有關(guān)直線與圓的問(wèn)題,涉及到的知識(shí)點(diǎn)有直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式,圓上的點(diǎn)到直線的距離的最小值問(wèn)題,屬于簡(jiǎn)單題目.2、D【解析】
取的中點(diǎn),連接,,連接,,由線面垂直的判定和性質(zhì)可判斷①;由三角形的中位線定理,以及線面平行的判定定理可判斷②③④.【詳解】解:取的中點(diǎn),連接,,連接,,正方形和所在平面互相垂直,、分別是和的中點(diǎn),可得,,平面,可得,故①正確;由為的中位線,可得,且平面,可得平面,故②③正確,④錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查空間線線和線面的位置關(guān)系,考查轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于基礎(chǔ)題.3、C【解析】
將代入,化簡(jiǎn)得到答案.【詳解】故答案選C【點(diǎn)睛】本題考查了向量的運(yùn)算,意在考查學(xué)生的計(jì)算能力.4、B【解析】
根據(jù),則即可求解.【詳解】因?yàn)闃颖緮?shù)據(jù),,…,的方差為2,所以,,…,的方差為,故選B.【點(diǎn)睛】本題主要考查了方差的概念及求法,屬于容易題.5、C【解析】
分別計(jì)算出甲、乙兩位同學(xué)成績(jī)的平均分、中位數(shù)、眾數(shù),由此確定正確選項(xiàng).【詳解】甲的平均分為,乙的平均分,兩人平均分相同,故A選項(xiàng)錯(cuò)誤.甲的中位數(shù)為,乙的中位數(shù)為,兩人中位數(shù)不相同,故B選項(xiàng)錯(cuò)誤.甲的眾數(shù)是,乙的眾數(shù)是,故D選項(xiàng)錯(cuò)誤.所以正確的答案為C.由莖葉圖可知,甲的數(shù)據(jù)比較集中,乙的數(shù)據(jù)比較分散,所以甲比較穩(wěn)定.(因?yàn)榉讲钸\(yùn)算量特別大,故不需要計(jì)算出方差.)故選:C【點(diǎn)睛】本小題主要考查根據(jù)莖葉圖比較平均數(shù)、中位數(shù)、眾數(shù)、方差,屬于基礎(chǔ)題.6、C【解析】對(duì)稱軸穿過(guò)曲線的最高點(diǎn)或最低點(diǎn),把代入后得到,因而對(duì)稱軸為,選.7、B【解析】
由集合A,B,C,求出B與C的并集,判斷A與C的包含關(guān)系,以及A,B,C三者之間的關(guān)系即可.【詳解】由題BA,∵A={第一象限角},B={銳角},C={小于90°的角},∴B∪C={小于90°的角}=C,即BC,則B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故選:B.【點(diǎn)睛】此題考查了集合間的基本關(guān)系及運(yùn)算,熟練掌握象限角,銳角,以及小于90°的角表示的意義是解本題的關(guān)鍵,是易錯(cuò)題8、D【解析】
求出正四棱錐的高后可求其體積.【詳解】正四棱錐底面的對(duì)角線的長(zhǎng)度為,故正四棱錐的高為,所以體積為,故選D.【點(diǎn)睛】正棱錐中,棱錐的高、斜高、側(cè)棱和底面外接圓的半徑可構(gòu)成四個(gè)直角三角形,它們溝通了棱錐各個(gè)幾何量之間的關(guān)系,解題中注意利用它們實(shí)現(xiàn)不同幾何量之間的聯(lián)系.9、D【解析】由數(shù)列是公比為的等比數(shù)列,且滿足,得,所以,所以,設(shè)數(shù)列的公差為,則,故選D.10、C【解析】
畫(huà)出長(zhǎng)方體,將平移至,則,則即為異面直線與所成角,由余弦定理即可求解.【詳解】根據(jù)題意,畫(huà)出長(zhǎng)方體如下圖所示:將平移至,則即為異面直線與所成角,,由余弦定理可得故選:C【點(diǎn)睛】本題考查了長(zhǎng)方體中異面直線的夾角求法,余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
直接運(yùn)用空間兩點(diǎn)間距離公式求解即可.【詳解】由空間兩點(diǎn)距離公式可得:.【點(diǎn)睛】本題考查了空間兩點(diǎn)間距離公式,考查了數(shù)學(xué)運(yùn)算能力.12、【解析】
圓柱的側(cè)面打開(kāi)是一個(gè)矩形,長(zhǎng)為底面的周長(zhǎng),寬為圓柱的高,即,帶入數(shù)據(jù)即可.【詳解】因?yàn)閳A柱的底面圓的半徑為2,所以圓柱的底面圓的周長(zhǎng)為,則該圓柱的側(cè)面積為.【點(diǎn)睛】此題考察圓柱側(cè)面積公式,屬于基礎(chǔ)題目.13、【解析】
先求得的取值范圍,將題目所給不等式轉(zhuǎn)化為含的絕對(duì)值不等式,對(duì)分成三種情況,結(jié)合絕對(duì)值不等式的解法和不等式恒成立的思想,求得的取值范圍.【詳解】由于,故可化簡(jiǎn)得恒成立.當(dāng)時(shí),顯然成立.當(dāng)時(shí),可得,,可得且,可得,即,解得.當(dāng)時(shí),可得,可得且,可得,即,解得.綜上所述,的取值范圍是.【點(diǎn)睛】本小題主要考查三角函數(shù)的值域,考查含有絕對(duì)值不等式恒成立問(wèn)題,考查存在性問(wèn)題的求解策略,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.14、194【解析】由.故答案為:194.15、1【解析】試題分析:依據(jù)隨機(jī)數(shù)表,抽取的編號(hào)依次為785,567,199,1.第四粒編號(hào)為1.考點(diǎn):隨機(jī)數(shù)表.16、.【解析】
設(shè)時(shí)針轉(zhuǎn)過(guò)的角的弧度數(shù)為,可知分針轉(zhuǎn)過(guò)的角為,于此得出,由此可計(jì)算出的值,從而可得出時(shí)針轉(zhuǎn)過(guò)的弧度數(shù)的絕對(duì)值的值.【詳解】設(shè)時(shí)針轉(zhuǎn)過(guò)的角的弧度數(shù)的絕對(duì)值為,由分針的角速度是時(shí)針角速度的倍,知分針轉(zhuǎn)過(guò)的角的弧度數(shù)的絕對(duì)值為,由題意可知,,解得,因此,時(shí)針轉(zhuǎn)過(guò)的弧度數(shù)的絕對(duì)值等于,故答案為.【點(diǎn)睛】本題考查弧度制的應(yīng)用,主要是要弄清楚時(shí)針與分針旋轉(zhuǎn)的角之間的等量關(guān)系,考查分析問(wèn)題和計(jì)算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(1)【解析】
(1)由平面∥平面,根據(jù)面面平行的性質(zhì)定理,可得,,再由,得到.由平面平面,根據(jù)面面垂直的性質(zhì)定理可得平面,從而有.(2)過(guò)作于,根據(jù)題意有平面,過(guò)D作于H,連結(jié)AH,由三垂線定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.【詳解】(1)證明:∵平面∥平面,∴,,∵,,又∵平面平面,平面平面,∴平面,平面,∴.(2)過(guò)作于,∵為正三角形,∴D為中點(diǎn),∵平面∴又∵,∴平面.在等邊三角形中,,過(guò)D作于H,連結(jié)AH,由三垂線定理知,∴是二面角的平面角.在中,~,,∴,,∴.【點(diǎn)睛】本題主要考查幾何體中面面平行的性質(zhì)定理和面面垂直的性質(zhì)定理及二角面角問(wèn)題,還考查了空間想象,抽象概括,推理論證的能力,屬于中檔題.18、當(dāng)或時(shí),函數(shù)的值等于0;當(dāng)時(shí),函數(shù)的值大于0;當(dāng)或時(shí),函數(shù)的值小于0.【解析】
將問(wèn)題轉(zhuǎn)化為解方程和解不等式,以及,分別求解即可.【詳解】由題:由得:或;由得:;由得:或,綜上所述:當(dāng)或時(shí),函數(shù)的值等于0;當(dāng)時(shí),函數(shù)的值大于0;當(dāng)或時(shí),函數(shù)的值小于0.【點(diǎn)睛】此題考查解二次方程和二次不等式,關(guān)鍵在于熟練掌握二次方程和二次不等式的解法,準(zhǔn)確求解.19、(1);(2)【解析】
(1)利用等比數(shù)列的性質(zhì)結(jié)合已知條件解得首項(xiàng)和公比,由此得通項(xiàng)公式;(2)由(1)得,再利用等差數(shù)列的求和公式進(jìn)行解答即可.【詳解】(1)由題意,得,又,所以,,或,,由是遞增的等比數(shù)列,得,所以,,且,∴,即;(2)由(1)得,得,所以數(shù)列是以1為首項(xiàng),以2為公差的等差數(shù)列,所以.【點(diǎn)睛】本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式,以及等差數(shù)列的其前n項(xiàng)和公式的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.20、(1)(2)(3)【解析】
(1)先根據(jù)題設(shè)知,再利用求得,驗(yàn)證符合,最后答案可得.
(2)由題設(shè)可知,把代入,然后用錯(cuò)位相減法求和;(3)計(jì)算,判斷其大于零時(shí)的范圍,可得數(shù)列取最大值時(shí)的項(xiàng)數(shù),進(jìn)而可得最大值..【詳解】解:(1)由已知得:,∵當(dāng)時(shí),,又當(dāng)時(shí),符合上式.(2)由已知得:①②②-①可得:(3)令,得:,又且,即為最大,故最大值為.【點(diǎn)睛】本題主要考查了數(shù)列的遞推式解決數(shù)列的通項(xiàng)公式和求和問(wèn)題,考查數(shù)列最大項(xiàng)的求解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 洗滌劑的課程設(shè)計(jì)
- 家居建材行業(yè)銷售員培訓(xùn)心得
- 班級(jí)心理健康活動(dòng)的設(shè)計(jì)計(jì)劃
- 【八年級(jí)下冊(cè)歷史】第1課 中華人民共和國(guó)成立 同步練習(xí)
- 農(nóng)業(yè)行業(yè)話務(wù)員工作心得
- 化工行業(yè)銷售工作總結(jié)
- 2024年秋季開(kāi)學(xué)第一課教案
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)標(biāo)準(zhǔn)卷
- 2024年牛郎織女教案 (一)
- 2025屆武威市高三語(yǔ)文(上)期末聯(lián)考試卷及答案解析
- 護(hù)理人才梯隊(duì)建設(shè)規(guī)劃方案
- 睡眠區(qū)布局設(shè)計(jì)打造舒適宜人的睡眠環(huán)境
- 建筑設(shè)計(jì)行業(yè)項(xiàng)目商業(yè)計(jì)劃書(shū)
- 慢性病防治健康教育知識(shí)講座
- 骶尾部藏毛疾病診治中國(guó)專家共識(shí)(2023版)
- 【高新技術(shù)企業(yè)所得稅稅務(wù)籌劃探析案例:以科大訊飛為例13000字(論文)】
- 幽門螺旋桿菌
- 智慧農(nóng)業(yè)利用技術(shù)提高農(nóng)業(yè)可持續(xù)發(fā)展的方案
- 制冷壓縮機(jī)安全操作規(guī)程范文
- 初中歷史考試試題答題卡模版
- 《草圖大師建?!肥谡n計(jì)劃+教案
評(píng)論
0/150
提交評(píng)論