




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年北京市西城區(qū)月壇中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知兩條直線m,n,兩個(gè)平面α,β,下列命題正確是()A.m∥n,m∥α?n∥α B.α∥β,m?α,n?β?m∥nC.α⊥β,m?α,n?β?m⊥n D.α∥β,m∥n,m⊥α?n⊥β2.已知點(diǎn)A(1,0),B(0,1),C(–2,–3),則△ABC的面積為A.3 B.2 C.1 D.3.已知函數(shù),則不等式的解集是()A. B. C. D.4.讀下面的程序框圖,若輸入的值為-5,則輸出的結(jié)果是()A.-1 B.0 C.1 D.25.如圖,在三棱柱中,側(cè)棱垂直于底面,底面是邊長為2的正三角形,側(cè)棱長為3,則與平面所成的角為()A. B. C. D.6.已知數(shù)列滿足若,則數(shù)列的第2018項(xiàng)為()A. B. C. D.7.某公司的廣告費(fèi)支出與銷售額(單位:萬元)之間有下列對(duì)應(yīng)數(shù)據(jù):已知對(duì)呈線性相關(guān)關(guān)系,且回歸方程為,工作人員不慎將表格中的第一個(gè)數(shù)據(jù)遺失,該數(shù)據(jù)為()A.28 B.30 C.32 D.358.已知圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,直線與圓相交于,兩點(diǎn),且,則圓的半徑長為()A. B. C.3 D.9.在中,角、、所對(duì)的邊分別為、、,如果,則的形狀是()A.等腰三角形 B.等腰直角三角形C.等腰三角形或直角三角形 D.直角三角形10.若對(duì)任意,不等式恒成立,則a的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.古希臘數(shù)學(xué)家阿波羅尼斯在他的巨著《圓錐曲線論》中有一個(gè)著名的幾何問題:在平面上給定兩點(diǎn),,動(dòng)點(diǎn)滿足(其中和是正常數(shù),且),則的軌跡是一個(gè)圓,這個(gè)圓稱之為“阿波羅尼斯圓”,該圓的半徑為__________.12.點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為_____.13.已知,則______.14.在ΔABC中,角A,B,C所對(duì)的對(duì)邊分別為a,b,c,若A=30°,a=7,b=215.已知是等比數(shù)列,且,,那么________________.16.在扇形中,如果圓心角所對(duì)弧長等于半徑,那么這個(gè)圓心角的弧度數(shù)為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列.(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)令cn=an?bn,求數(shù)列{cn}的前n項(xiàng)和Sn.18.某同學(xué)利用暑假時(shí)間到一家商場(chǎng)勤工儉學(xué),該商場(chǎng)向他提供了三種付款方式:第一種,每天支付38圓;第二種,第一天付4元,第二天付8元,第三天付12元,以此類推:第三種,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),你會(huì)選擇哪種方式領(lǐng)取報(bào)酬呢?19.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知.(1)求角B的大小;(2)設(shè)a=2,c=3,求b和的值.20.已知,,,,求的值.21.已知函數(shù)的最小正周期為.(1)求的值和函數(shù)的值域;(2)求函數(shù)的單調(diào)遞增區(qū)間及其圖像的對(duì)稱軸方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
在A中,n∥α或n?α;在B中,m與n平行或異面;在C中,m與n相交、平行或異面;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β.【詳解】由兩條直線m,n,兩個(gè)平面α,β,知:在A中,m∥n,m∥α?n∥α或n?α,故A錯(cuò)誤;在B中,α∥β,m?α,n?β?m與n平行或異面,故B錯(cuò)誤;在C中,α⊥β,m?α,n?β?m與n相交、平行或異面,故C錯(cuò)誤;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β,故D正確.故選:D.【點(diǎn)評(píng)】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.2、A【解析】
由兩點(diǎn)式求得直線的方程,利用點(diǎn)到直線距離公式求得三角形的高,由兩點(diǎn)間距離公式求得的長,從而根據(jù)三角形面積公式可得結(jié)果.【詳解】∵點(diǎn)A(1,0),B(0,1),∴直線AB的方程為x+y–1=0,,又∵點(diǎn)C(–2,–3)到直線AB的距離為,∴△ABC的面積為S=.故選A.【點(diǎn)睛】本題主要考查兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式、三角形面積公式以及直線方程的應(yīng)用,意在考查綜合運(yùn)用所學(xué)知識(shí)解答問題的能力,屬于中檔題.3、A【解析】
分別考慮即時(shí);即時(shí),原不等式的解集,最后求出并集?!驹斀狻慨?dāng)即時(shí),,則等價(jià)于,即,解得:,當(dāng)即時(shí),,則等價(jià)于,即,所以,綜述所述,原不等式的解集為故答案選A【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,一元二次不等式的解集,屬于基礎(chǔ)題。4、A【解析】
直接模擬程序框圖運(yùn)行,即可得出結(jié)論.【詳解】模擬程序框圖的運(yùn)行過程如下:輸入,進(jìn)入判斷結(jié)構(gòu),則,,輸出,故選:A.【點(diǎn)睛】本題主要考查程序框圖,一般求輸出結(jié)果時(shí),常模擬程序運(yùn)行,列表求解.5、A【解析】
取的中點(diǎn),連接、,作,垂足為點(diǎn),證明平面,于是得出直線與平面所成的角為,然后利用銳角三角函數(shù)可求出.【詳解】如下圖所示,取的中點(diǎn),連接、,作,垂足為點(diǎn),是邊長為的等邊三角形,點(diǎn)為的中點(diǎn),則,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直線與平面所成的角為,易知,在中,,,,,,即直線與平面所成的角為,故選A.【點(diǎn)睛】本題考查直線與平面所成角的計(jì)算,求解時(shí)遵循“一作、二證、三計(jì)算”的原則,一作的是過點(diǎn)作面的垂線,有時(shí)也可以通過等體積法計(jì)算出點(diǎn)到平面的距離,利用該距離與線段長度的比值作為直線與平面所成角的正弦值,考查計(jì)算能力與推理能力,屬于中等題.6、A【解析】
利用數(shù)列遞推式求出前幾項(xiàng),可得數(shù)列是以4為周期的周期數(shù)列,即可得出答案.【詳解】,,,數(shù)列是以4為周期的周期數(shù)列,則.故選A.【點(diǎn)睛】本題考查數(shù)列的遞推公式和周期數(shù)列的應(yīng)用,考查學(xué)生分析解決問題的能力,屬于中檔題.7、B【解析】
由回歸方程經(jīng)過樣本中心點(diǎn),求得樣本平均數(shù)后代入回歸方程即可求得第一組的數(shù)值.【詳解】設(shè)第一組數(shù)據(jù)為,則,,根據(jù)回歸方程經(jīng)過樣本中心點(diǎn),代入回歸方程,可得,解得,故選:B.【點(diǎn)睛】本題考查了回歸方程的性質(zhì)及簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.8、A【解析】
根據(jù)題干畫出簡(jiǎn)圖,在直角中,通過弦心距和半徑關(guān)系通過勾股定理求解即可?!驹斀狻繄A的圓心與點(diǎn)關(guān)于直線對(duì)稱,所以,,設(shè)圓的半徑為,如下圖,圓心到直線的距離為:,,【點(diǎn)睛】直線和圓相交問題一般兩種方法:第一,通過弦心距d和半徑r的關(guān)系,通過勾股定理求解即可。第二,直線方程和圓的方程聯(lián)立,則。兩種思路,此題屬于中檔題型。9、C【解析】
結(jié)合正弦定理和三角恒等變換及三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)即可求得結(jié)果【詳解】利用正弦定理得,化簡(jiǎn)得,即,則或,解得或故的形狀是等腰三角形或直角三角形故選:C【點(diǎn)睛】本題考查根據(jù)正弦定理和三角恒等變化,三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)求值,屬于中檔題10、D【解析】
對(duì)任意,不等式恒成立,即恒成立,代入計(jì)算得到答案.【詳解】對(duì)任意,不等式恒成立即恒成立故答案為D【點(diǎn)睛】本題考查了不等式恒成立問題,意在考查學(xué)生的計(jì)算能力和解決問題的能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè),由動(dòng)點(diǎn)滿足(其中和是正常數(shù),且),可得,化簡(jiǎn)整理可得.【詳解】設(shè),由動(dòng)點(diǎn)滿足(其中和是正常數(shù),且),所以,化簡(jiǎn)得,即,所以該圓半徑故該圓的半徑為.【點(diǎn)睛】本題考查圓方程的標(biāo)準(zhǔn)形式和兩點(diǎn)距離公式,難點(diǎn)主要在于計(jì)算.12、【解析】
設(shè)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,再根據(jù)中點(diǎn)在直線上,且與直線垂直求解即可.【詳解】設(shè)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,則中點(diǎn)為,則在直線上,故①.又與直線垂直有②,聯(lián)立①②可得.故.故答案為:【點(diǎn)睛】本題主要考查了點(diǎn)關(guān)于直線對(duì)稱的點(diǎn)坐標(biāo),屬于基礎(chǔ)題.13、【解析】
由題意得出,然后在分式的分子和分母中同時(shí)除以,然后利用常見的數(shù)列極限可計(jì)算出所求極限值.【詳解】由題意得出.故答案為:.【點(diǎn)睛】本題考查數(shù)列極限的計(jì)算,熟悉一些常見數(shù)列極限是解題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.14、32或【解析】
由余弦定理求出c,再利用面積公式即可得到答案?!驹斀狻坑捎谠讦BC中,A=30°,a=7,b=23,根據(jù)余弦定理可得:a2=b所以當(dāng)c=1時(shí),ΔABC的面積S=12bcsinA=32故ΔABC的面積等于32或【點(diǎn)睛】本題考查余弦定理與面積公式在三角形中的應(yīng)用,屬于中檔題。15、【解析】
先根據(jù)等比數(shù)列性質(zhì)化簡(jiǎn)方程,再根據(jù)平方性質(zhì)得結(jié)果.【詳解】∵是等比數(shù)列,且,,∴,即,則.【點(diǎn)睛】本題考查等比數(shù)列性質(zhì),考查基本求解能力.16、1【解析】
根據(jù)弧長公式求解【詳解】因?yàn)閳A心角所對(duì)弧長等于半徑,所以【點(diǎn)睛】本題考查弧長公式,考查基本求解能力,屬基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=2n+1;bn=3n;(2)Sn=n?3n+1.【解析】
(1)利用基本元的思想,結(jié)合等差數(shù)列、等比數(shù)列的通項(xiàng)公式、等比中項(xiàng)的性質(zhì)列方程,解方程求得的值,從而求得數(shù)列的通項(xiàng)公式.(2)利用錯(cuò)位相減求和法求得數(shù)列的前項(xiàng)和.【詳解】(1)公差d不為零的等差數(shù)列{an}和公比為q的等比數(shù)列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比數(shù)列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an?bn=(2n+1)?3n,前n項(xiàng)和Sn=3?3+5?32+7?33+…+(2n+1)?3n,3Sn=3?32+5?33+7?34+…+(2n+1)?3n+1,兩式相減可得﹣2Sn=9+2(32+33+…+3n)﹣(2n+1)?3n+1=9+2?(2n+1)?3n+1,化簡(jiǎn)可得Sn=n?3n+1.【點(diǎn)睛】本小題主要考查等差數(shù)列,等比數(shù)列通項(xiàng)公式,考查錯(cuò)位相減求和法,考查運(yùn)算求解能力,屬于中檔題.18、見解析【解析】
,,.下面考察,,的大?。梢钥闯鰰r(shí),.因此,當(dāng)工作時(shí)間小于10天時(shí),選用第一種付費(fèi)方式,時(shí),,,因此,選用第三種付費(fèi)方式.19、(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由題意結(jié)合正弦定理邊化角結(jié)合同角三角函數(shù)基本關(guān)系可得,則B=.(Ⅱ)在△ABC中,由余弦定理可得b=.結(jié)合二倍角公式和兩角差的正弦公式可得詳解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因?yàn)椋傻肂=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因?yàn)閍<c,故.因此,所以,點(diǎn)睛:在處理三角形中的邊角關(guān)系時(shí),一般全部化為角的關(guān)系,或全部化為邊的關(guān)系.題中若出現(xiàn)邊的一次式一般采用到正弦定理,出現(xiàn)邊的二次式一般采用到余弦定理.應(yīng)用正、余弦定理時(shí),注意公式變式的應(yīng)用.解決三角形問題時(shí),注意角的限制范圍.20、【解析】
根據(jù)角的范圍結(jié)合條件可求出,的值,然后求出的值,再由二倍角公式可求解.【詳解】由,,得.又,則.由,,得.所以又所以【點(diǎn)睛】本題考查兩角和與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)蒙古自治區(qū)根河市市級(jí)名校2025年初三高中生物試題競(jìng)賽模擬(二)生物試題含解析
- 四川省仁壽縣鏵強(qiáng)中學(xué)2025屆高三下學(xué)期物理試題試卷含解析
- 儀隴縣2025屆數(shù)學(xué)三下期末聯(lián)考試題含解析
- 浙江音樂學(xué)院《鍋爐原理B》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川文化傳媒職業(yè)學(xué)院《汽車?yán)碚揂》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶輕工職業(yè)學(xué)院《工程光學(xué)設(shè)計(jì)(雙語)》2023-2024學(xué)年第二學(xué)期期末試卷
- 七臺(tái)河市重點(diǎn)中學(xué)2025年學(xué)業(yè)水平考試英語試題模擬題卷含解析
- 上海立信會(huì)計(jì)金融學(xué)院《醫(yī)學(xué)免疫學(xué)與微生物學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)蒙古自治區(qū)海勃灣區(qū)2025年初三下第三次月考化學(xué)試題含解析
- 湖南醫(yī)藥學(xué)院《中醫(yī)診斷學(xué)技能》2023-2024學(xué)年第一學(xué)期期末試卷
- 二次發(fā)酵法制作面包論文
- 堤防工程設(shè)計(jì)規(guī)范
- 高處作業(yè)審批表
- 接地網(wǎng)狀態(tài)評(píng)估課件
- 英語口譯基礎(chǔ)教程--Unit-7-10
- 國家開放大學(xué)電大本科《兒童心理學(xué)》網(wǎng)絡(luò)課形考任務(wù)話題討論答案(第二套)
- 《淮陰師范學(xué)院二級(jí)學(xué)院經(jīng)費(fèi)核撥管理辦法(試行)》
- 諾基亞LTE FDD設(shè)備技術(shù)說明(2)
- 清篩車挖掘輸送裝置
- 實(shí)名核驗(yàn)(法人)業(yè)務(wù)辦理表
- 離合齒輪的工藝規(guī)程與專用夾具設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論