版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省滄州市七縣2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)的最小正周期為()A. B. C. D.2.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.已知向量,,則()A. B. C. D.4.直線y=﹣x+1的傾斜角是()A.30° B.45° C.1355.如圖,中,,,用表示,正確的是()A. B.C. D.6.若,滿足,則的最大值為().A. B. C. D.7.直線被圓截得的弦長(zhǎng)為()A.4 B. C. D.8.設(shè),則()A.3 B.2 C.1 D.09.的內(nèi)角的對(duì)邊分別為,若,則()A. B. C. D.10.“()”是“函數(shù)是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知一組數(shù)1,2,m,6,7的平均數(shù)為4,則這組數(shù)的方差為_(kāi)_____.12.將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC折起,使平面ACD⊥平面ABC,則折起后B,D兩點(diǎn)的距離為_(kāi)_______.13.函數(shù)的最小正周期為_(kāi)_______14.已知平面向量,,滿足:,且,則的最小值為_(kāi)___.15.已知向量滿足,則16.已知向量夾角為,且,則__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知正項(xiàng)等比數(shù)列滿足,,數(shù)列滿足.(1)求數(shù)列,的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和;(3)若,且對(duì)所有的正整數(shù)都有成立,求的取值范圍.18.在等差數(shù)列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比數(shù)列{bn}的前三項(xiàng).(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;(2)設(shè)cn=an·bn,求數(shù)列{cn}的前n項(xiàng)和Sn.19.設(shè).(1)當(dāng)時(shí),解關(guān)于的不等式;(2)若關(guān)于的不等式的解集為,求的值.20.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,終邊過(guò)點(diǎn).(1)求的值;(2)已知為銳角,,求的值.21.已知直線恒過(guò)定點(diǎn),圓經(jīng)過(guò)點(diǎn)和定點(diǎn),且圓心在直線上.(1)求圓的方程;(2)已知點(diǎn)為圓直徑的一個(gè)端點(diǎn),若另一端點(diǎn)為點(diǎn),問(wèn)軸上是否存在一點(diǎn),使得為直角三角形,若存在,求出的值;若不存在,說(shuō)明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】,函數(shù)的最小正周期為,選.【點(diǎn)睛】求三角函數(shù)的最小正周期,首先要利用三角公式進(jìn)行恒等變形,化簡(jiǎn)函數(shù)解析式,把函數(shù)解析式化為的形式,然后利用周期公式求出最小正周期,另外還要注意函數(shù)的定義域.2、C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則:在A中,若,,則與相交或平行,故A錯(cuò)誤;在B中,若,,則或,故B錯(cuò)誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯(cuò)誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),是中檔題.3、D【解析】
根據(jù)平面向量的數(shù)量積,計(jì)算模長(zhǎng)即可.【詳解】因?yàn)橄蛄?,則,,故選:D.【點(diǎn)睛】本題考查了平面向量的數(shù)量積與模長(zhǎng)公式的應(yīng)用問(wèn)題,是基礎(chǔ)題.4、C【解析】
由直線方程可得直線的斜率,進(jìn)而可得傾斜角.【詳解】直線y=﹣x+1的斜率為﹣1,設(shè)傾斜角為α,則tanα=﹣1,∴α=135°故選:C.【點(diǎn)睛】本題考查直線的傾斜角和斜率的關(guān)系,屬基礎(chǔ)題.5、C【解析】
由平面向量基本定理和三角形法則求解即可【詳解】由,可得,則,即.故選C.【點(diǎn)睛】本題考查平面向量基本定理和三角形法則,熟記定理和性質(zhì)是解題關(guān)鍵,是基礎(chǔ)題6、D【解析】作出不等式組,所表示的平面區(qū)域,如圖所示,當(dāng)時(shí),可行域?yàn)樗倪呅蝺?nèi)部,目標(biāo)函數(shù)可化為,即,平移直線可知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大,從而最大,此時(shí),,當(dāng)時(shí),可行域?yàn)槿切?,目?biāo)函數(shù)可化為,即,平移直線可知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大,從而最大,,綜上,的最大值為.故選.點(diǎn)睛:利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標(biāo)系內(nèi)作出可行域.(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見(jiàn)的類型有截距型(型)、斜率型(型)和距離型(型).(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解.(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值.注意解答本題時(shí)不要忽視斜率不存在的情形.7、B【解析】
先由圓的一般方程寫出圓心坐標(biāo),再由點(diǎn)到直線的距離公式求出圓心到直線m的距離d,則弦長(zhǎng)等于.【詳解】∵,∴,∴圓的圓心坐標(biāo)為,半徑為,又點(diǎn)到直線的距離,∴直線被圓截得的弦長(zhǎng)等于.【點(diǎn)睛】本題主要考查圓的弦長(zhǎng)公式的求法,常用方法有代數(shù)法和幾何法;屬于基礎(chǔ)題型.8、B【解析】
先求內(nèi)層函數(shù),將所求值代入分段函數(shù)再次求解即可【詳解】,則故選:B【點(diǎn)睛】本題考查分段函數(shù)具體函數(shù)值的求法,屬于基礎(chǔ)題9、B【解析】
首先通過(guò)正弦定理將邊化角,于是求得,于是得到答案.【詳解】根據(jù)正弦定理得:,即,而,所以,又為三角形內(nèi)角,所以,故選B.【點(diǎn)睛】本題主要考查正弦定理的運(yùn)用,難度不大.10、C【解析】若,則,函數(shù)為奇函數(shù),所以充分性成立;反之,若函數(shù)是奇函數(shù),則,即,因此必要性也是成立,所以“”是“函數(shù)是奇函數(shù)”充要條件,故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先根據(jù)平均數(shù)計(jì)算出的值,再根據(jù)方差的計(jì)算公式計(jì)算出這組數(shù)的方差.【詳解】依題意.所以方差為.故答案為:.【點(diǎn)睛】本小題主要考查平均數(shù)和方差的有關(guān)計(jì)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.12、1.【解析】
取AC的中點(diǎn)E,連結(jié)DE,BE,可知DE⊥AC,由平面ACD⊥平面ABC,可得DE⊥平面ABC,DE⊥BE,而,再結(jié)合ABCD是正方形可求出.【詳解】取AC的中點(diǎn)E,連結(jié)DE,BE,顯然DE⊥AC,因?yàn)槠矫鍭CD⊥平面ABC,所以DE⊥平面ABC,所以DE⊥BE,而,所以,.【點(diǎn)睛】本題考查了空間中兩點(diǎn)間的距離,把空間角轉(zhuǎn)化為平面角是解決本題的關(guān)鍵.13、【解析】
根據(jù)的最小正周期判斷即可.【詳解】因?yàn)榈淖钚≌芷诰鶠?故的最小正周期為.故答案為:【點(diǎn)睛】本題主要考查了正切余切函數(shù)的周期,屬于基礎(chǔ)題型.14、-1【解析】
,,,由經(jīng)過(guò)向量運(yùn)算得,知點(diǎn)在以為圓心,1為半徑的圓上,這樣,只要最小,就可化簡(jiǎn).【詳解】如圖,,則,設(shè)是中點(diǎn),則,∵,∴,即,,記,則點(diǎn)在以為圓心,1為半徑的圓上,記,,注意到,因此當(dāng)與反向時(shí),最小,∴.∴最小值為-1.故答案為-1.【點(diǎn)睛】本題考查平面向量的數(shù)量積,解題關(guān)鍵是由已知得出點(diǎn)軌跡(讓表示的有向線段的起點(diǎn)都是原點(diǎn))是圓,然后分析出只有最小時(shí),才可能最?。畯亩玫浇忸}方法.15、【解析】試題分析:=,又,,代入可得8,所以考點(diǎn):向量的數(shù)量積運(yùn)算.16、【解析】試題分析:的夾角,,,,.考點(diǎn):向量的運(yùn)算.【思路點(diǎn)晴】平面向量的數(shù)量積計(jì)算問(wèn)題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標(biāo)運(yùn)算公式,涉及幾何圖形的問(wèn)題,先建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可起到化繁為簡(jiǎn)的妙用.利用向量夾角公式、模公式及向量垂直的充要條件,可將有關(guān)角度問(wèn)題、線段長(zhǎng)問(wèn)題及垂直問(wèn)題轉(zhuǎn)化為向量的數(shù)量積來(lái)解決.列出方程組求解未知數(shù).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2);(3).【解析】
(1)設(shè)等比數(shù)列的公比為,則,根據(jù)條件可求出的值,利用等比數(shù)列的通項(xiàng)公式可求出,再由對(duì)數(shù)的運(yùn)算可求出數(shù)列的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,然后利用錯(cuò)位相減法求出數(shù)列的前項(xiàng)和為;(3)利用數(shù)列單調(diào)性的定義求出數(shù)列最大項(xiàng)的值為,由題意得出關(guān)于的不等式對(duì)任意的恒成立,然后利用參變量分離法得出,并利用基本不等式求出在時(shí)的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè)等比數(shù)列的公比為,則,由可得,,,即,,解得,.;(2)由(1)可得,,可得,上式下式,得,因此,;(3),,,,即,則有.所以,數(shù)列是單調(diào)遞減數(shù)列,則數(shù)列的最大項(xiàng)為.由題意可知,關(guān)于的不等式對(duì)任意的恒成立,.由基本不等式可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則在時(shí)的最小值為,,因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式的求解,考查錯(cuò)位相減求和法以及數(shù)列不等式恒成立問(wèn)題,涉及數(shù)列最大項(xiàng)的問(wèn)題,一般利用數(shù)列單調(diào)性的定義來(lái)求解,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.18、(1)bn=3n-1;(2)Sn=(n-1)·3n+1【解析】
(1)由a1,a2,a5是等比數(shù)列{bn}的前三項(xiàng)得,a22=a1·a5?(a1+d)2=a1·(a1+4d)··?a12+2a1d+d2=a12+4a1d?d2=2a1d,又d≠0,所以d=2a1=2,從而an=a1+(n-1)d=2n-1,則b1=a1=1,b2=a2=3,則等比數(shù)列{bn}的公比q=3,從而bn=3n-1(2)由(1)得,cn=an·bn=(2n-1)·3n-1,則Sn=1·1+3·3+5·32+7·33+…+(2n-1)·3n-1①3Sn=1·3+3·32+5·33+…+(2n-3)·3n-1+(2n-1)·3n②①-②得,-2Sn=1·1+2·3+2·32+2·33+…+2·3n-1-(2n-1)·3n=1+2×-(2n-1)·3n=-2(n-1)·3n-2··則Sn=(n-1)·3n+1.19、(1)(2)【解析】
(1)代入?yún)?shù)值,解二次不等式即可;(2)不等式,即,故得到1,2是方程的兩實(shí)根,根據(jù)韋達(dá)定理得到數(shù)值.【詳解】(1)當(dāng)時(shí),不等式即為,∴或,因此原不等式的解集為.(2)不等式,即,由題意知,且1,2是方程的兩實(shí)根,因此.【點(diǎn)睛】這個(gè)題目考查了二次不等式的解法,以及二次函數(shù)和二次不等式的關(guān)系,考查了二次不等式的韋達(dá)定理的應(yīng)用,屬于基礎(chǔ)題.20、(1);(2).【解析】
(1)利用三角函數(shù)的定義可求出,再根據(jù)二倍角的余弦公式即可求解.(2)由(1)可得,再利用同角三角函數(shù)的基本關(guān)系可得,由,利用兩角差的正切公式即可求解.【詳解】解:(1)依題意得,,,所以.(2)由(1)得,,故.因?yàn)椋?,,所以,又因?yàn)椋裕?所以,所以.【點(diǎn)睛】本小題主要考查同角三角函數(shù)關(guān)系、三角恒等變換等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查化歸與轉(zhuǎn)化思想等.21、(1);(2)見(jiàn)解析【解析】
(1)先求出直線過(guò)定點(diǎn),設(shè)圓的一般方程,由題意列方程組,即可求圓的方程;(2)由(1)可知:求得直線的斜率,根據(jù)對(duì)稱性求得點(diǎn)坐標(biāo),由在圓外,所以點(diǎn)不能作
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 年度井下多功能測(cè)振儀產(chǎn)業(yè)分析報(bào)告
- 2025年度大型體育賽事策劃與執(zhí)行個(gè)人雇傭合同4篇
- 二零二五年度仿古面磚采購(gòu)及修復(fù)服務(wù)合同4篇
- 2025年路燈安裝工程環(huán)境保護(hù)及污染防治合同3篇
- 船舶貨運(yùn)技術(shù)課程設(shè)計(jì)
- 二零二五年度高空作業(yè)風(fēng)險(xiǎn)評(píng)估免責(zé)協(xié)議3篇
- 油松植苗施工方案
- 2025年度生態(tài)停車車庫(kù)租賃與綠化養(yǎng)護(hù)協(xié)議3篇
- 二零二五年度民間借貸債權(quán)債務(wù)轉(zhuǎn)讓授權(quán)委托合同4篇
- 2024影視作品攝制及發(fā)行權(quán)轉(zhuǎn)讓合同
- 全國(guó)醫(yī)學(xué)博士英語(yǔ)統(tǒng)一考試詞匯表(10000詞全) - 打印版
- 最新《會(huì)計(jì)職業(yè)道德》課件
- 廣東省湛江市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細(xì)
- DB64∕T 1776-2021 水土保持生態(tài)監(jiān)測(cè)站點(diǎn)建設(shè)與監(jiān)測(cè)技術(shù)規(guī)范
- ?中醫(yī)院醫(yī)院等級(jí)復(fù)評(píng)實(shí)施方案
- 數(shù)學(xué)-九宮數(shù)獨(dú)100題(附答案)
- 理正深基坑之鋼板樁受力計(jì)算
- 學(xué)校年級(jí)組管理經(jīng)驗(yàn)
- 10KV高壓環(huán)網(wǎng)柜(交接)試驗(yàn)
- 未來(lái)水電工程建設(shè)抽水蓄能電站BIM項(xiàng)目解決方案
- 房屋出租家具電器清單
評(píng)論
0/150
提交評(píng)論