北京市清華附中2023-2024學年高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第1頁
北京市清華附中2023-2024學年高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第2頁
北京市清華附中2023-2024學年高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第3頁
北京市清華附中2023-2024學年高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第4頁
北京市清華附中2023-2024學年高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京市清華附中2023-2024學年高一數(shù)學第二學期期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則下列不等式成立的是A. B. C. D.2.已知等比數(shù)列的前項和為,若,,則數(shù)列的公比()A. B. C.或 D.以上都不對3.已知內(nèi)角,,所對的邊分別為,,且滿足,則=()A. B. C. D.4.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.若,則以下不等式一定成立的是()A. B. C. D.6.在鈍角三角形ABC中,若B=45°,a=2,則邊長cA.(1,2) B.(0,1)∪(7.一個幾何體的三視圖如圖所示,那么此幾何體的側(cè)面積(單位:cm2)為()A.48 B.64 C.120 D.808.中,分別是內(nèi)角的對邊,且,,則等于()A. B. C. D.9.已知函數(shù),下列結(jié)論不正確的是(

)A.函數(shù)的最小正周期為B.函數(shù)在區(qū)間內(nèi)單調(diào)遞減C.函數(shù)的圖象關于軸對稱D.把函數(shù)的圖象向左平移個單位長度可得到的圖象10.將圖像向左平移個單位,所得的函數(shù)為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.等比數(shù)列中,若,,則______.12.函數(shù)f(x)=2cos(x)﹣1的對稱軸為_____,最小值為_____.13.已知求______________.14.函數(shù)的最小正周期是________.15.函數(shù)是定義域為R的奇函數(shù),當時,則的表達式為________.16.已知等差數(shù)列{an}的公差為d,且d≠0,其前n項和為Sn,若滿足a1,a2,a5成等比數(shù)列,且S3=9,則d=_____,Sn=_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.自變量在什么范圍取值時,函數(shù)的值等于0?大于0呢?小于0呢?18.設數(shù)列為等比數(shù)列,且,,(1)求數(shù)列的通項公式:(2)設,數(shù)列的前項和,求證:.19.在中,角A,B,C,的對應邊分別為,且.(Ⅰ)求角B的大?。唬á颍┤舻拿娣e為,,D為AC的中點,求BD的長.20.如圖,已知是半徑為1,圓心角為的扇形,是扇形狐上的動點,點分別在半徑上,且是平行四邊形,記,四邊形的面積為,問當取何值時,最大?的最大值是多少?21.如圖,以Ox為始邊作角與(),它們終邊分別單位圓相交于點、,已知點的坐標為.(1)若,求角的值;(2)若·,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用的單調(diào)性直接判斷即可。【詳解】因為在上遞增,又,所以成立。故選:C【點睛】本題主要考查了冪函數(shù)的單調(diào)性,屬于基礎題。2、C【解析】

根據(jù)和可得,解得結(jié)果即可.【詳解】由得,所以,所以,所以,解得或故選:C.【點睛】本題考查了等比數(shù)列的通項公式的基本量的運算,屬于基礎題.3、A【解析】

利用正弦定理以及和與差的正弦公式可得答案;【詳解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根據(jù)正弦定理:可得sinA?tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴?tanA=1;∴tanA,那么A;故選A.【點睛】本題考查三角形的正弦定理,,內(nèi)角和定理以及和與差正弦公式的運用,考查運算能力,屬于基礎題.4、A【解析】

根據(jù)和之間能否推出的關系,得到答案.【詳解】由可得,由,得到或,,不能得到,所以“”是“”的充分不必要條件,故選:A.【點睛】本題考查充分不必要條件的判斷,屬于簡單題.5、C【解析】

利用不等式的運算性質(zhì)分別判斷,正確的進行證明,錯誤的舉出反例.【詳解】沒有確定正負,時,,所以不選A;當時,,所以不選B;當時,,所以不選D;由,不等式成立.故選C.【點睛】本題考查不等式的運算性質(zhì),比較法證明不等式,屬于基本題.6、D【解析】試題分析:解法一:,由三角形正弦定理誘導公式有,利用三角恒等公式能夠得到,當A為銳角時,0°<A<45°,,即,當A為鈍角時,90°<A<135°,,綜上所述,;解法二:利用圖形,如圖,,,當點A(D)在線段BE上時(不含端點B,E),為鈍角,此時;當點A在線段EF上時,為銳角三角形或直角三角形;當點A在射線FG(不含端點F)上時,為鈍角,此時,所以c的取值范圍為.考點:解三角形.【思路點睛】解三角形需要靈活運用正余弦定理以及三角形的恒等變形,在解答本題時,利用三角形內(nèi)角和,將兩角化作一角,再利用正弦定理即可列出邊長c與角A的關系式,根據(jù)角A的取值范圍即可求出c的范圍,本題亦可利用物理學中力的合成,合力的大小來確定c的大小,正如解法二所述.7、D【解析】

先還原幾何體,再根據(jù)錐體側(cè)面積公式求結(jié)果.【詳解】幾何體為一個正四棱錐,底面為邊長為8的正方體,側(cè)面為等腰三角形,底邊上的高為5,因此四棱錐的側(cè)面積為,選D.【點睛】解答此類題目的關鍵是由多面體的三視圖想象出空間幾何體的形狀并畫出其直觀圖.8、D【解析】試題分析:由已知得,解得(舍)或,又因為,所以,由正弦定理得.考點:1、倍角公式;2、正弦定理.9、D【解析】

利用余弦函數(shù)的性質(zhì)對A、B、C三個選項逐一判斷,再利用平移“左加右減”及誘導公式得出,進而得出答案.【詳解】由題意,函數(shù)其最小正周期為,故選項A正確;函數(shù)在上為減函數(shù),故選項B正確;函數(shù)為偶函數(shù),關于軸對稱,故選項C正確把函數(shù)的圖象向左平移個單位長度可得,所以選項D不正確.故答案為D【點睛】本題主要考查了余弦函數(shù)的性質(zhì),以及誘導公式的應用,著重考查了推理與運算能力,屬于基礎題.10、A【解析】

根據(jù)三角函數(shù)的圖象的平移變換得到所求.【詳解】由已知將函數(shù)y=cos2x的圖象向左平移個單位,所得的函數(shù)為y=cos2(x)=cos(2x);故選:A.【點睛】本題考查了三角函數(shù)的圖象的平移;明確平移規(guī)律是解答的關鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設的首項為,公比為,根據(jù),列出方程組,求出和即可得解.【詳解】設的首項為,公比為,則:,解之得,所以:.故答案為:.【點睛】本題考查等比數(shù)列中某項的求法,解題關鍵是根據(jù)題意列出方程組,需要注意的是為了簡化運算不用直接求解,解出即可,屬于基礎題.12、﹣3【解析】

利用余弦函數(shù)的圖象的對稱性,余弦函數(shù)的最值,求得結(jié)論.【詳解】解:對于函數(shù),令,求得,根據(jù)余弦函數(shù)的值域可得函數(shù)的最小值為,故答案為:;.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,余弦函數(shù)的最值,屬于基礎題.13、23【解析】

直接利用數(shù)量積的坐標表示求解.【詳解】由題得.故答案為23【點睛】本題主要考查平面向量的數(shù)量積的計算,意在考查學生對該知識的理解掌握水平,屬于基礎題.14、【解析】

根據(jù)函數(shù)的周期公式計算即可.【詳解】函數(shù)的最小正周期是.故答案為【點睛】本題主要考查了正切函數(shù)周期公式的應用,屬于基礎題.15、【解析】試題分析:當時,,,因是奇函數(shù),所以,是定義域為R的奇函數(shù),所以,所以考點:函數(shù)解析式、函數(shù)的奇偶性16、2n2.【解析】

由已知列關于首項與公差的方程組,求解可得首項與公差,再由等差數(shù)列的前項和求解.【詳解】由題意,有,即,解得,所以.故答案為:,.【點睛】本題考查等差數(shù)列的通項公式與前項和,考查等比數(shù)列的性質(zhì),屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、當或時,函數(shù)的值等于0;當時,函數(shù)的值大于0;當或時,函數(shù)的值小于0.【解析】

將問題轉(zhuǎn)化為解方程和解不等式,以及,分別求解即可.【詳解】由題:由得:或;由得:;由得:或,綜上所述:當或時,函數(shù)的值等于0;當時,函數(shù)的值大于0;當或時,函數(shù)的值小于0.【點睛】此題考查解二次方程和二次不等式,關鍵在于熟練掌握二次方程和二次不等式的解法,準確求解.18、(1)(2)詳見解析【解析】

(1)將已知條件轉(zhuǎn)化為等比數(shù)列的基本量和,得到的值,從而得到數(shù)列的通項;(2)根據(jù)題意寫出,然后得到數(shù)列的通項,利用列項相消法進行求和,得到其前項和,然后進行證明.【詳解】設等比數(shù)列的首項為,公比為,因為,所以,所以所以;(2),所以,所以.因為,所以.【點睛】本題考查等比數(shù)列的基本量計算,裂項相消法求數(shù)列的和,屬于簡單題.19、(I);(II)【解析】

(I)由正弦定理得,展開結(jié)合兩角和的正弦整理求解;(Ⅱ)由面積得,利用平方求解即可【詳解】(I),由正弦定理得整理得,則,,.(II),,兩邊平方得【點睛】本題考查正弦定理及兩角和的正弦,三角形內(nèi)角和定理,考查向量的數(shù)量積及模長,準確計算是關鍵,是中檔題20、當時,最大,最大值為【解析】

設,,在中,由余弦定理,基本不等式可得,根據(jù)三角形的面積公式即可求解.【詳解】解:設,在中,由余弦定理得:,由基本不等式,,可得,當且僅當時取等號,∴,當且僅當時取等號,此時,∴當時,最大,最大值為.【點睛】本題主要考查余弦定理,基本不等式,三角形的面積公式的綜合應

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論