2023-2024學年黑龍江省哈爾濱市阿城區(qū)二中高一下數(shù)學期末教學質(zhì)量檢測試題含解析_第1頁
2023-2024學年黑龍江省哈爾濱市阿城區(qū)二中高一下數(shù)學期末教學質(zhì)量檢測試題含解析_第2頁
2023-2024學年黑龍江省哈爾濱市阿城區(qū)二中高一下數(shù)學期末教學質(zhì)量檢測試題含解析_第3頁
2023-2024學年黑龍江省哈爾濱市阿城區(qū)二中高一下數(shù)學期末教學質(zhì)量檢測試題含解析_第4頁
2023-2024學年黑龍江省哈爾濱市阿城區(qū)二中高一下數(shù)學期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年黑龍江省哈爾濱市阿城區(qū)二中高一下數(shù)學期末教學質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,且,則與的夾角是()A. B. C. D.2.函數(shù)的圖象沿軸向左平移個單位長度后得到函數(shù)的圖象的一個對稱中心是()A. B. C. D.3.已知平面上四個互異的點、、、滿足:,則的形狀一定是()A.等邊三角形 B.直角三角形 C.等腰三角形 D.鈍角三角形4.如圖,在中,,,若,則()A. B. C. D.5.已知a,b,c∈R,那么下列命題中正確的是()A.若a>b,則ac2>bc2B.若,則a>bC.若a3>b3且ab<0,則D.若a2>b2且ab>0,則6.在中,A,B,C的對邊分別為a,b,c,,則的形狀一定是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.等腰直角三角形7.在數(shù)列an中,an+1=an+a(n∈N*,a為常數(shù)),若平面上的三個不共線的非零向量OA、OB、OC滿足OC=a1A.1005 B.1006 C.2010 D.20128.在等比數(shù)列中,則()A.81 B. C. D.2439.已知,∥則()A.6 B. C.-6 D.10.已知,且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在四面體ABCD中,平面ABC,,,若四面體ABCD的外接球的表面積為,則四面體ABCD的體積為_______.12.已知,,且,則的最小值為________.13.若數(shù)列滿足,,則______.14.如果數(shù)據(jù)的平均數(shù)是,則的平均數(shù)是________.15.三棱錐的各頂點都在球的球面上,,平面,,,球的表面積為,則的表面積為_______.16.光線從點射向y軸,經(jīng)過y軸反射后過點,則反射光線所在的直線方程是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,為圓的直徑,點,在圓上,,矩形和圓所在的平面互相垂直,已知,.(1)求證:平面平面;(2)當時,求多面體的體積.18.某工廠共有200名工人,已知這200名工人去年完成的產(chǎn)品數(shù)都在區(qū)間(單位:萬件)內(nèi),其中每年完成14萬件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成5組,第1組、第2組第3組、第4組、第5組對應的區(qū)間分別為,,,,,并繪制出如圖所示的頻率分布直方圖.(1)選取合適的抽樣方法從這200名工人中抽取容量為25的樣本,求這5組分別應抽取的人數(shù);(2)現(xiàn)從(1)中25人的樣本中的優(yōu)秀員工中隨機選取2名傳授經(jīng)驗,求選取的2名工人在同一組的概率.19.已知向量,,.(1)求(2)若與垂直,求實數(shù)的值.20.已知角的終邊經(jīng)過點,且.(1)求的值;(2)求的值.21.化簡求值:(1)化簡:(2)求值,已知,求的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)相互垂直的向量數(shù)量積為零,求出與的夾角.【詳解】由題有,即,故,因為,所以.故選:B.【點睛】本題考查了向量的數(shù)量積運算,向量夾角的求解,屬于基礎題.2、B【解析】

先求出變換后的函數(shù)的解析式,求出所得函數(shù)的對稱中心坐標,可得出正確選項.【詳解】函數(shù)的圖象沿軸向左平移個單位長度后得到函數(shù)的解析式為,令,得,因此,所得函數(shù)的圖象的一個對稱中心是,故選B.【點睛】本題考查圖象的變換以及三角函數(shù)的對稱中心,解題的關鍵就是求出變換后的三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.3、C【解析】

由向量的加法法則和減法法則化簡已知表達式,再由向量的垂直和等腰三角形的三線合一性質(zhì)得解.【詳解】設邊的中點,則所以在中,垂直于的中線,所以是等腰三角形.故選C.【點睛】本題考查向量的線性運算和數(shù)量積,屬于基礎題.4、B【解析】∵∴又,∴故選B.5、C【解析】

根據(jù)不等式的性質(zhì),對A、B、C、D四個選項通過舉反例進行一一驗證.【詳解】A.若a>b,則ac2>bc2(錯),若c=0,則A不成立;B.若,則a>b(錯),若c<0,則B不成立;C.若a3>b3且ab<0,則(對),若a3>b3且ab<0,則D.若a2>b2且ab>0,則(錯),若,則D不成立.故選:C.【點睛】此題主要考查不等關系與不等式的性質(zhì)及其應用,例如舉反例法求解比較簡單.兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關系.6、A【解析】

利用平方化倍角公式和邊化角公式化簡得到,結合三角形內(nèi)角和定理化簡得到,即可確定的形狀.【詳解】化簡得即即是直角三角形故選A【點睛】本題考查了平方化倍角公式和正弦定理的邊化角公式,在化簡時,將邊化為角,使邊角混雜變統(tǒng)一,還有三角形內(nèi)角和定理的運用,這一點往往容易忽略.7、A【解析】

利用等差數(shù)列的定義可知數(shù)列an為等差數(shù)列,由向量中三點共線的結論得出a1+【詳解】∵an+1=an∵三點A、B、C共線且該直線不過O點,OC=a1因此,S2010故選:A.【點睛】本題考查等差數(shù)列求和,涉及等差數(shù)列的定義以及向量中三點共線結論的應用,考查計算能力,屬于中等題.8、A【解析】解:因為等比數(shù)列中,則,選A9、A【解析】

根據(jù)向量平行(共線),它們的坐標滿足的關系式,求出的值.【詳解】,且,,解得,故選A.【點睛】利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.10、D【解析】

首先根據(jù),求得,結合角的范圍,利用平方關系,求得,利用題的條件,求得,之后將角進行配湊,使得,利用正弦的和角公式求得結果.【詳解】因為,所以,因為,所以.因為,,所以,所以,故選D.【點睛】該題考查的是有關三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關系式,正弦函數(shù)的和角公式,在解題的過程中,注意時刻關注角的范圍.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

易得四面體為長方體的一角,再根據(jù)長方體體對角線等于外接球直徑,再利用對角線公式求解即可.【詳解】因為四面體中,平面,且,.故四面體是以為一個頂點的長方體一角.設則因為四面體的外接球的表面積為,設其半徑為,故.解得.故四面體的體積.故答案為:【點睛】本題主要考查了長方體一角的四面體的外接球有關問題,需要注意長方體體對角線等于外接球直徑.屬于中檔題.12、【解析】

由,可得,然后利用基本不等式可求出最小值.【詳解】因為,所以,當且僅當,時取等號.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件.13、【解析】

利用遞推公式再遞推一步,得到一個新的等式,兩個等式相減,再利用累乘法可求出數(shù)列的通項公式,利用所求的通項公式可以求出的值.【詳解】得,,所以有,因此.故答案為:【點睛】本題考查了利用遞推公式求數(shù)列的通項公式,考查了累乘法,考查了數(shù)學運算能力.14、5【解析】

根據(jù)平均數(shù)的定義計算.【詳解】由題意,故答案為:5.【點睛】本題考查求新數(shù)據(jù)的均值.掌握均值定義是解題關鍵.實際上如果數(shù)據(jù)的平均數(shù)是,則新數(shù)據(jù)的平均數(shù)是.15、【解析】

根據(jù)題意可證得,而,所以球心為的中點.由球的表面積為,即可求出,繼而得出的值,求出三棱錐的表面積.【詳解】如圖所示:∵,平面,∴,又,故球心為的中點.∵球的表面積為,∴,即有.∴,.∴,,,.故的表面積為.故答案為:.【點睛】本題主要考查三棱錐的表面積的求法,球的表面積公式的應用,意在考查學生的直觀想象能力和數(shù)學運算能力,屬于基礎題.16、(或?qū)懗桑窘馕觥?/p>

光線從點射向y軸,即反射光線反向延長線經(jīng)過關于y軸的對稱點,則反射光線通過和兩個點,設直線方程求解即可?!驹斀狻坑深}意可知,所求直線方程經(jīng)過點關于y軸的對稱點為,則所求直線方程為,即.【點睛】此題的關鍵點在于物理學上光線的反射光線和入射光線關于鏡面對稱,屬于基礎題目。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】

(1)由題可得,,從而可得平面,由此證明平面平面;(2)過作交于,所以為四棱錐的高,多面體的體積,利用體積公式即可得到答案.【詳解】(1)證明:∵平面平面,矩形,,平面平面,∴平面,∵平面,∴,又∵為圓的直徑,∴,又,∴平面,∵平面,平面平面;(2)過作交于,由面面垂直性質(zhì)可得平面,即為四棱錐的高,由是邊長為1的等邊三角形,可得,又正方形的面積為4,∴..所以.【點睛】本題主要考查面面垂直的證明,以及求多面體的體積,要求熟練掌握相應判定定理以及椎體、柱體的體積公式,屬于中檔題.18、(1)第1組:2;第2組:8,;第3組:9;第4組:3;第5組:3(2)【解析】

(1)根據(jù)頻率之和為列方程,解方程求得的值.然后根據(jù)分層抽樣的計算方法,計算出每組抽取的人數(shù).(2)利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】(1):,.用分層抽樣比較合適.第1組應抽取的人數(shù)為,第2組應抽取的人數(shù)為,第3組應抽取的人數(shù)為,第4組應抽取的人數(shù)為,第5組應抽取的人數(shù)為.(2)(1)中25人的樣本中的優(yōu)秀員工中,第4組有3人,記這3人分別為,第5組有3人,記這3人分別為.從這6人中隨機選取2名,所有的基本事件為:,,,,,,,,,,,,,,,共有15個基本事件.選取的2名工人在同一組的基本事件有,,,,,共6個,故選取的2名工人在同一組的概率為.【點睛】本小題主要考查補全頻率分布,考查分層抽樣,考查古典概型的計算,屬于基礎題.19、(1)-44;(2)【解析】

(1)利用已知條件求出,然后由向量的數(shù)量積坐標表示即可求出.(2)利用向量的垂直數(shù)量積為0,列出方程,求解即可.【詳解】(1)由題意得:,;(2)由與垂直得:,即,即,解得:.【點睛】本題主要考查向量的數(shù)量積的求法與應用.20、(1);(2)【解析】

(1)由利用任意角的三角函數(shù)的定義,列等式可求得實數(shù)的值;(2)由(1)可得,利用誘導公式可得原式=,根據(jù)同角三角函數(shù)的關系,可得結果.【詳解】(1)由三角函數(shù)的定義可知(2)由(1)知可得原式====【點睛】本題主要考查誘導公式的應用以及三角函數(shù)的定義,屬于簡單題.對誘導公式的記憶不但要正確理解“奇變偶不變,符號看象限”的含

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論