版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024年山東省濟南市萊蕪區(qū)中考一模數(shù)學(xué)試題
學(xué)校:姓名:班級:考號:
一、單選題
1.-2的倒數(shù)是()
A.2B.—2C.~D.—
22
【答案】D
【分析】
本題主要考查了求一個數(shù)的倒數(shù),根據(jù)乘積為1的兩個數(shù)互為倒數(shù)進(jìn)行求解即可.
【詳解】解:=
,-2的倒數(shù)是二,
2
故選:D.
2.下列幾何體中,其主視圖是三角形的是()
【答案】A
【分析】本題考查了判斷簡單幾何體的三視圖,旨在考查學(xué)生的空間想象能力.
【詳解】解:A:主視圖為三角形,符合題意;
B:主視圖為矩形,不符合題意;
C:主視圖為圓,不符合題意;
D:主視圖為矩形,不符合題意;
故選:A
3.2023年我國城鎮(zhèn)新增就業(yè)12440000人,將數(shù)字12440000用科學(xué)記數(shù)法表示為()
A.0.1244xl08B.1.244xl08C.1.244xl07D.12.44xl07
【答案】C
試卷第1頁,共30頁
【分析】
本題考查了科學(xué)記數(shù)法表示絕對值較大的數(shù)的方法,掌握科學(xué)記數(shù)法的表示形式為
axlO"的形式,其中141al<10,〃為整數(shù)是關(guān)鍵,科學(xué)記數(shù)法的表示形式為axlO"的形
式,其中14同<10,〃為整數(shù).確定〃的值時,要看把原數(shù)變成。時,小數(shù)點移動了多
少位,"的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于等于10時,〃是正整數(shù);
當(dāng)原數(shù)的絕對值小于1時,〃是負(fù)整數(shù),根據(jù)科學(xué)記數(shù)法的表示方法求解即可;
【詳解】12440000=1.244xlO7.
故選:C.
4.剪紙藝術(shù)是我國獨有的藝術(shù)形式之一,下列剪紙既是軸對稱圖形,又是中心對稱圖
形的是()
【答案】D
【分析】本題主要考查了軸對稱圖形和中心對稱圖形的識別,如果一個平面圖形沿一條
直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;把一個圖形繞
著某一個點旋轉(zhuǎn)180。,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中
心對稱圖形,這個點就是它的對稱中心.根據(jù)中心對稱圖形的定義和軸對稱圖形的定義
進(jìn)行逐一判斷即可.
【詳解】解:A.不是軸對稱圖形也不是中心對稱圖形,故該選項不符合題意;
B.是軸對稱圖形不是中心對稱圖形,故該選項不符合題意;
C.是軸對稱圖形不是中心對稱圖形,故該選項不符合題意;
D.既是軸對稱也是中心對稱圖形,故該選項符合題意;
故選:D.
5.如圖,AB//CD,/ECD=80。,EF平分NBEC,則()
cFD
試卷第2頁,共30頁
A.100°B.120°C.130°D.160°
【答案】C
【分析】
本題考查了平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是熟練掌握平行線的性質(zhì),
角平分線的定義,由平行線的性質(zhì)可得,4EC=80。,由鄰補角的性質(zhì)可得4EC=100。,
由角平分線的定義可得48歷=50。,再由鄰補角的性質(zhì)即可求解.
【詳解】ZECD=80°,
ZAEC=NECD=80°,
ZBEC=180°-ZAEC=180°-80°=100°,
EF平分/BEC,
ZBEF=-ZBEC=-xl00°=50°,
22
ZAEF=180°-ZBEF=180°-50°=130°,
故選:C.
6.實數(shù)a、6在數(shù)軸上對應(yīng)點的位置如圖所示,則下列結(jié)論正確的是()
ba
IIII.I,II.tII
-5-4-3-2-1012345
ab
A.a+b<0B.a-b>0C.-2a>-2bD.—<—
33
【答案】B
【分析】此題考查實數(shù)與數(shù)軸,實數(shù)的運算和比較大小等知識,熟練掌握運算法則是解
題的關(guān)鍵.先由數(shù)軸得到2<3,-2<b<-l,再逐項做出判斷即可.
【詳解】解:由數(shù)軸可知,2<a<3,-2<b<-l,
a+b>0,a-b>0,-2a<0<-2b,,
33
綜上可知,只有選項B正確,
故選:B
7.下列運算正確的是()
A.a~+6~=(a+6)~B.(a-
C.(-a。2)=—a^b5D.(%).(-2a6~)=-2a/,
【答案】D
【分析】
此題主要考查了完全平方公式的運用和同底數(shù)幕的乘法運算以及幕的乘方運算,根據(jù)完
試卷第3頁,共30頁
全平方公式和同底數(shù)幕的乘法運算法則以及幕的乘方運算法則計算后判斷即可.
222
【詳解】解:A.a+b=(a+b)-2ab,原計算錯誤,故該選項不符合題意;
B.(a-b>)=a2-2ab+b2,原計算錯誤,故該選項不符合題意;
C.(-ab2>)=-a3b6,原計算錯誤,故該選項不符合題意;
D.(ab2)-(-2ab2)=-2a2b4,原計算正確,故該選項符合題意;
故選:D.
8.某校開展“龍的傳人”演講比賽,每班選兩名選手參加比賽,九(1)班的小華,小麗,
小軍,小明積極報名參賽,從他們4人中選2名參賽,選中小華和小軍的概率是()
1111
A.—B.-C.-D.-
12632
【答案】B
【分析】本題考查了用樹狀圖或列表法求概率,畫出樹狀圖,根據(jù)樹狀圖即可求解,掌
握樹狀圖或列表法是解題的關(guān)鍵.
【詳解】解:設(shè)小華、小麗、小軍、小明分別用4B、C、。表示,
畫樹狀圖如下:
開始
由樹狀圖可得,共有12種等結(jié)果,其中選中小華和小軍的有2種,
,選中小華和小軍的概率是二2=1
126
故選:B.
9.如圖,在中,AC=BC,NBAC=36°,以點/為圓心,以/C為半徑作弧交48
于點。,連接CD,以點。為圓心,以。。為半徑作弧交4D于點£,分別以點為
圓心,以大于!CE的長為半徑作弧,兩弧交于點尸,作射線。2交ZC于點尸,以下結(jié)
2
論不正琥的是()
A./CDF=36°B.AF=BD
試卷第4頁,共30頁
AB^AABC
【答案】D
【分析】
此題考查了等腰三角形等邊對等角,相似三角形的判定和性質(zhì),角平分線的作圖及性質(zhì),
解一元二次方程,根據(jù)題中的作圖步驟,得出。P平分再結(jié)合/C=3C,
NBAC=36。,可得出圖中相等的邊,相等的角,由此可證明A/CDSAOB,據(jù)此可解
決問題.熟練掌握各知識點是解題的關(guān)鍵.
【詳解】解:根據(jù)題中的作圖步驟可知,AC=AD,DP平分NCD4.
,:ABAC=36°,AC=BC,
:.ZCZ)^=Z^CZ)=1x(180o-36o)=72o,ZB=ZBAC=36°,ZACB=1OS°
:?NCDF=N4DF=I7牙=36,ZCFD=12°,ZBCD=ZACB-ACD=36°,
2
故A選項中的結(jié)論正確.
ZA=ZADF=36°,
AF=DF.
ZFCD=ZCFD=72°,
???DF=CD.
丁/B=NDCB=36。,
:.CD=BD,
:.AF=BD.
故B選項中的結(jié)論正確.
VZBAC=ZCDF=36°,ZACD=ZDCF,
AACDS^DCF,
,ACCDACAF
??=,叫"=,
CDCFAFCF
AF+CF〔CFAF人CF
即Rn:-------=1+一=一,令——=t,
AFAFCFAF
則1+1J,解得:yI二1(負(fù)值舍去),
t2
.CFV5-1
??-------------?
AF2
不妨令。尸=有-1,AF=2,
則AD=AC=y/5-1+2=45+1.
又:BD=AF=2,
試卷第5頁,共30頁
/.715=75+1+2=6+3,
,CF_=布-1=4囪一8
'AF石+3(3+君卜(3-6)4
故C選項中的結(jié)論正確.
.廣△CDF=CF二期-1,
S&ADF4F2
.S“DF_CF_也_3-也
S/XACD/CV5+12
又.廣用_AD_也-\
S/L4BCABJ~5+32
:.建辿=三具蟲」=出一2,
S/LIBC22
故D選項中的結(jié)論錯誤.
故選:D.
10.若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角
形.有下列結(jié)論:
①已知Ay43c是比例三角形,AB=4,BC=5,那么/C=2百;
②在。8c中,點。在/C上,且4D=3C,ZABD=NC,那么AA8C是比例三角形;
③如圖,在四邊形4BCD中,己知BD平分/ABC,AB1AC,ADLCD,
那么“3C是比例三角形;
④已知直線;;=岳+30與x軸、V軸交于點48,點C(3,0),那么小BC是比例三角
形.
其中,正確的個數(shù)是()
A.4B.3C.2D.1
【答案】C
【分析】
本題考查新定義比例三角形、勾股定理、相似三角形,理解新定義是解題關(guān)鍵.
試卷第6頁,共30頁
①應(yīng)該有3種情況,②條件不足,③用相似三角形定義判定A/BCSADCN,得到
AC-=ADBC,進(jìn)而求解乙4。8=44助,得至U48=/£),即可得證;④由解析式求48
坐標(biāo),確定三邊長度,即可得證.
【詳解】①三角形ABC是比例三角形,若AC?=/BBC,那么/C=2百;若/爐=4c?BC,
那么/C=£;若BC°=AB,AC,那么/C=25,因此①錯誤;
②已知NO=8C,ZABD=/C,無法證得三角形Z8C一條邊的平方等于另外兩條邊的
乘積,因此②錯誤;
③因為所以/DZC=//CS,又因為48_L/C,ADVCD,所以
Z.ADC=Z.CAB,所以A4BCSADC4,---=---,可以得到/C?=/DBC;因為
ACAD
AD\\BC,所以N4DB=NCBD;又因為8。平分/4BC,所以ZABD=NCBD,
ZADB=ZABD,AB=AD,因此/C?=/公臺。,三角形NBC是比例三角形,因此③正
確;
④已知直線的解析式,可以求出點/(-3,0)、點以0,3。),那么/C=6,48=6,BC=6,
三角形任意一條邊的平方都等于另外兩條邊的乘積,三角形ABC是比例三角形,因此
④正確;
綜上所述,正確的序號有③④,答案是選項C.
二、填空題
11.因式分解:x2-3x=.
【答案】x(x-3)
【詳解】試題分析:提取公因式x即可,即x2-3x=x(x-3).
考點:因式分解.
12.為刺激消費,某商店舉行促銷活動,凡在本店購物總額超100元,便有一次轉(zhuǎn)動轉(zhuǎn)
盤(如圖)返現(xiàn)金機會,指針停在線上無效,重轉(zhuǎn)一次,某顧客購物超100元,他獲得
20元返現(xiàn)金的可能是.
試卷第7頁,共30頁
【答案叱
【分析】
本題主要考查了概率公式,隨機事件A的概率尸(/)=事件A可能出現(xiàn)的結(jié)果數(shù)+所有
可能出現(xiàn)的結(jié)果數(shù).
【詳解】解:獲得20元返現(xiàn)金的次數(shù)是1,則獲得20元返現(xiàn)金的可能是」.
12
故答案為:—.
Y1
13.已知代數(shù)式丁三比二一大2,則工=
3x-22-3x
【答案】1
【分析】
本題主要考查了解分式方程,解題的關(guān)鍵是根據(jù)題意列出方程,先變分式方程為整式方
程,然后解整式方程,最后對方程的解進(jìn)行檢驗即可.
【詳解】解:?.?代數(shù)式廠三比一1大2,
3x-22-3x
A-............--2,
3x-22—3x
去分母得:x+l=2(3x-2),
解得:x=l,
經(jīng)檢驗X=1是原方程的解.
故答案為:1.
14.如圖,正五邊形的一條邊在正六邊形的一條邊/C上,則度.
【答案】12
【分析】
本題考查了多邊形的內(nèi)角和定理,利用求多邊形的內(nèi)角和公式,得出正五邊形的內(nèi)角、
正六邊形的內(nèi)角是解題關(guān)鍵,根據(jù)正多邊形的內(nèi)角的求法,可得/胡£、ZDAB,進(jìn)
而可得答案.
【詳解】:正五邊形的內(nèi)角=0-2)x180。=]08。,
試卷第8頁,共30頁
十、、-uTT/4A.qA(6—2)x180°
,?,正六邊形的1內(nèi)角=^^——-----=120°,
6
ZBAE=nO0,
ZDAE=ZBAE-ZDAB=120°-108°=12°,
故答案為:12.
15.某學(xué)校的八年級學(xué)生到距學(xué)校2千米的勞動基地參加植樹活動,一部分人步行,另
一部分人騎自行車,他們沿相同的路線前往,如圖,4,4分別表示步行和騎車的人前
往目的地所走的路程興千米)隨時間式分鐘)變化的函數(shù)圖象,則騎車的人用分
鐘追上步行的人.
“/千米
2------------------
051015202530x/分
【答案】y
【分析】
本題考查的是從函數(shù)圖象中獲取信息,理解坐標(biāo)含義是解本題的關(guān)鍵,先求解騎車與步
行的速度,再建立方程求解即可.
【詳解】解:由圖象可得:騎車的人的速度為每分鐘2+(2575)=0.2千米,
步行的速度為每分鐘:2+30=3千米,
設(shè)騎車的人用x分鐘追上步行的,則
—(x+15)=0.2x,
15''
解得:尤=:,
2
???騎車的人用y分鐘追上步行的,
故答案為:v-
2
16.如圖,在矩形4BCZ)中,AB=2,BC=3,點尸為CD的中點,將尸沿4尸折
疊,點。的對應(yīng)點為連接尸。并延長,交于點尸,CP的長為.
試卷第9頁,共30頁
3
【答案】4
【分析】
此題考查了折疊的性質(zhì)、矩形的性質(zhì),相似三角形的判定及性質(zhì),過點〃作
分別交ZB、CD于點M、N,即可判定四邊形/跖VD是矩形,根據(jù)折疊的性質(zhì)得出
ZD=ZAD'F=90°,DF=D'F=1,AD=AD'=3,根據(jù)直角三角形的性質(zhì)求出
4MAD'
AMAD'=/FD'N,進(jìn)而推出根據(jù)相似三角形的性質(zhì)得出=,
DNFD
,,,_____,,3
設(shè)D,N=x,貝l]MD'=3-x,根據(jù)勾股定理求出=根據(jù)比例的性質(zhì)求出x=1,
根據(jù)勾股定理求出網(wǎng)=:,再根據(jù)銳角三角函數(shù)定義求解即可.根據(jù)相似三角形的性質(zhì)
求出。W是解題的關(guān)鍵.
【詳解】解:如圖,過點〃作跖V〃/。,分別交A3、CD于點W、N,
?.?四邊形/BCD是矩形,
;.NBAD=ND=90°,AD=BC=3,AB=CD=2,
:MN//AD,
:.ZAMN+ZBAD=180°,ZD+ZDNM=180°,
ZAMN=ZDNM=90°,
四邊形4VCVD是矩形,ZAD'M+ZMAD'=90°,
:.MN=AD=3,
:點尸為C。的中點,
DF=CF=\,
:將尸沿脛?wù)郫B,點。的對應(yīng)點為DC,
/.ZD=ZAD'F=90°,DF=D'F=\,AD=AD'=3,
:.ZAD'M+NFD'N=90°,
:.ZMAD'=AFD'N,
試卷第10頁,共30頁
又:ZAMN=ZDNM,
:.△AMD"八D'NF,
.AMAD'
,?麗―初‘
設(shè)。W=x,則M>=3-x,
AM=AD'2-MD'2=^32-(3-X)2=yJSx-x?,
.<6x-x23
X1
3
:.x=-^x=O(舍去),
3
即Z)W=|,
FN=1DF-DN。=J-[I=|>
3
CP嘰1.2
tanZCFP=——
CFFNi4
5
3
:.CP=-
4
3
故答案為:
4
三、解答題
17.計算:一[一匕]+(^-3.14)°-cos45°.
【答案】-2.
【分析】本題考查了化簡絕對值,負(fù)整數(shù)指數(shù)幕的運算,零指數(shù)幕運算和三角函數(shù)值的
運算,先化簡絕對值,負(fù)整數(shù)指數(shù)幕的運算,零指數(shù)幕運算和三角函數(shù)值的運算,再進(jìn)
行實數(shù)的運用即可,熟練掌握運用法則是解題的關(guān)鍵.
【詳解】
解:原式="一3+1一包,
22
=-2.
3(x-l)<x+l
18.解不等式組x+2x,并寫出所有整數(shù)解.
---->—
135
【答案】不等式組的解集為-5Vx<2;-4,-3,-2,-1,0,1
【分析】
試卷第11頁,共30頁
本題考查了解一元一次不等式組,在數(shù)軸上表示不等式組的解集等知識,能根據(jù)不等式
的解集找出不等式組的解集是解題的關(guān)鍵.
先求出每個不等式的解集,再求出不等式組的解集即可.
【詳解】
3(x-l)<x+l@
解:\x+2x公
1-3---->-5-②
由①得:x<2,
由②得x>—5,
,不等式組的解集為-5<x<2,
.,.整數(shù)解為-4,-3,-2,-1,0,I.
19.如圖,已知。為Y4BCD對角線NC的中點,過點。的直線與4B、CD的延長線
相交于點£、F.求證:BE=DF.
FDC
ABE
【答案】見詳解
【分析】
本題主要考查了全等三角形的判定以及性質(zhì),平行四邊形的性質(zhì),根據(jù)平行四邊形的性
質(zhì)得出AB=CD,NOAE=ZOCF,再用ASA證明AAOE冬MOF,即可證明AE=CF,
再利用線段的和差和等量代換即可證明BE=DF.
【詳解】
證明:?.?四邊形/BCD為平行四邊形,
AB//CD,AB=CD,
NOAE=ZOCF,
:。為/C的中點,
AO=CO,
在△/£?£和ACO尸中
ZOAE=ZOCF
<AO=CO,
NAOE=ZCOF
:.AAOE知COF(ASA),
AE=CF,
試卷第12頁,共30頁
AE-AB=CF-CD,
即BE=DF.
20.如圖1是一種手機支架,由托板、支撐板和底座構(gòu)成,手機放置在托板上,圖2是
其側(cè)面結(jié)構(gòu)示意圖,量得托板=120mm,支撐板CD=110mm,底座DE,托板48
固定在支撐板頂端。處,且CS=40mm,托板可繞點C轉(zhuǎn)動,支撐板可繞點。
轉(zhuǎn)動.
圖1圖2
⑴若/DC3=70。,NCDE=60°,求點/到直線DE的距離.(精確至iJO.lmm)
(2)為了觀看舒適,在(1)的情況下,把繞點。逆時針旋轉(zhuǎn)20。后,再將CD繞點。
順時針旋轉(zhuǎn),使點2落在直線。£上,求旋轉(zhuǎn)的角度大約是多少度?
參考數(shù)據(jù):(sin40°*0.643,cos40°?0.766,tan40°?0.839,sin20°?0.342,
cos20°?0.940,tan20°?0.364,G*1.732).
【答案】⑴點/到直線DE的距離是156.5mm
(2)40°
【分析】
本題主要考查解直角三角形的應(yīng)用,熟練掌握三角函數(shù)是解題的關(guān)鍵;
(1)過點C作CFLDE于點尸,過點/作NGLCF于點G,由題意易得。尸=55方,
則有/BCF=4CG=40。,然后問題可求解;
(2)由題意易得ZZ)C8=90。,然后可得1211/8。。=五=詢70.3636,進(jìn)而問題可
求解
【詳解】(1)
解:過點。作CFLDE于點尸,過點/作NGLCF于點G,
試卷第13頁,共30頁
在RtZ^C。廠中,ZCDE=60°,
CF
sin60°=—
CD
,6_CF
?—-TT5
:?CF=556
?:CF±DE,
:.ZCFD=90°f
:./DCF=90°-ZCDE=90°-60°=30°,
ZBCF=ZDCB-ZDCF=70°-30°=40°,
???ZBCF=ZACG=40°f
在Rt/iZCG中,ZACG=40°,AC=120-40=SOmm,
:.cos40°=—,0.766=—,
AC80
???CG=61.28,
???G/=CG+C尸=61.28+55鳳156.5,
???平行線間的距離處處相等,
...點N到直線DE的距離是156.5mm.
(2)
在RM8CZ)中,
40
tanNBDC=——=——?0.3636,
CD110
???NBDC=20°,
???60°-20°=40°,
試卷第14頁,共30頁
/.CD旋轉(zhuǎn)40。.
21.某校對九年級學(xué)生進(jìn)行了一次“讀名著誦經(jīng)典”知識競賽,并隨機抽取甲、乙兩班學(xué)
生(人數(shù)相同)的競賽成績(滿分100分)進(jìn)行整理,描述分析,下面給出部分信息:
甲班成績的頻數(shù)分布直方圖如圖所示(數(shù)據(jù)分為6組:A:40<^<50,B:50Mx<60,
C:60Vx<70,D:70Mx<80,E:80Vx<90,F:904尤4100),其中90分以及90分
以上的人為優(yōu)秀;甲班的成績在70Mx<80這一組的是:71,72,72,73,74,75,76,
77,77,78,78,78,79.甲、乙兩班成績的平均數(shù)、中位數(shù)和優(yōu)秀人數(shù)如下表:
平均數(shù)中位數(shù)優(yōu)秀人數(shù)
甲班成績76m3
乙班成績73725
⑴統(tǒng)計圖中50Mx<60組對應(yīng)扇形的圓心角是度;
(2)請補全條形統(tǒng)計圖;
(3)表中m的值是;
(4)如果該校九年級學(xué)生有300名,估計九年級學(xué)生成績優(yōu)秀的有多少人?
【答案】(1)57.6
⑵見解析
(3)77
(4)24
【分析】
本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖信息關(guān)聯(lián)問題,旨在考查學(xué)生的數(shù)據(jù)處理能力.
(1)根據(jù)E組的條形統(tǒng)計圖和扇形統(tǒng)計圖的數(shù)據(jù)求出抽取的甲班學(xué)生人數(shù),即可求解;
(2)計算出C、尸組的人數(shù)即可求解;
(3)中位數(shù),是按順序排列的一組數(shù)據(jù)中居于中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)
據(jù)的平均數(shù)).
(4)計算出樣本中優(yōu)秀人數(shù)所占比例即可求解.
試卷第15頁,共30頁
【詳解】(1)解:由題意得:抽取的甲班學(xué)生人數(shù)為:17+34%=50(人)
O
,統(tǒng)計圖中50Mx<60組對應(yīng)扇形的圓心角是:—X360°=57.6°
故答案為:57.6
故答案為:77
(4)解:300X2_=24(人)
50x2
即:估計九年級學(xué)生成績優(yōu)秀的有24人
22.如圖,為O。的直徑,BE與G。相交于點C,過點C的切線垂足
為點D.
E
(2)若/3=6,CB=4,求CD的長.
【答案】(1)見解析;
⑵CD=拽.
3
【分析】(1)連接OC,由切線的性質(zhì),等腰三角形的性質(zhì)即可求證;
CDAC
(2)連接ZC,由勾股定理求出/C的長,證明A/DCSA/CB,得出丁=),即可
求解;
試卷第16頁,共30頁
本題考查了切線的性質(zhì),等腰三角形的判定,相似三角形的判定與性質(zhì),和勾股定理,
熟練掌握以上知識的應(yīng)用是解題的關(guān)鍵.
【詳解】
(1)證明:連接OC,
???CQ是。。的切線,
???OCLCD,
又
???AE//OC,
:.ZE=ZOCB,
?.?OC=OB,
:./B=ZOCB,
???/E=/B,
**?AE=AB;
(2)連接NC,
NB為。。的直徑,
AZACB=90°,即/C_L8E,
.,.在中,由勾股定理得/C=,/爐_叱=用孑=2右,
:AB=AE,AC1BE,
試卷第17頁,共30頁
ZEAC=ZBAC,
又NADC=ZACB=90°,
...LADCSAACB,
.CD_ACCD2V5
??一,--------,
BCAB46
:.CD=^-.
3
23.為全面貫徹黨的教育方針,保障學(xué)生每天在校1小時體育活動時間,某校計劃采購
部分籃球和足球,已知1個籃球和2個足球一共120元,3個籃球和4個足球一共270
元.
(1)求籃球,足球的單價分別是多少元;
(2)該校需購買足球和籃球一共100個,且足球的數(shù)量不少于籃球數(shù)量的:,那么購買足
球和籃球各多少個時花費最少?最少花費是多少元?
【答案】(1)每個足球的價格為45元,每個籃球的價格為30元
(2)足球購買20個,籃球購買80個,總費用最少,此時總費用為3300元
【分析】
本題考查二元一次方程組和一次函數(shù)的應(yīng)用,解題的關(guān)鍵是讀懂題意,列出方程組和函
數(shù)關(guān)系式.
(1)設(shè)籃球的單價為N元,足球的單價為V元,可得':即可解得答案;
[3x+4y=27。
(2)設(shè)購買。個足球,根據(jù)足球的數(shù)量不少于籃球數(shù)量的!得:a>!(100-a),求出
^>20,而平=45。+30(100—。)=15。+3000,根據(jù)一次函數(shù)性質(zhì)可得答案.
【詳解】(1)解:設(shè)籃球的單價為&元,足球的單價為y元,
根據(jù)題意得:[xw+上2y=;1"2鼠0
[3x+4y=270
x=30
解得
7=45
每個籃球的價格為30元,每個足球的價格為45元;
(2)
解:設(shè)購買。個足球,則購買(100-。)個籃球,購買足球和籃球總花費為沙元,
根據(jù)題意得:a>y(100-a),
試卷第18頁,共30頁
解得a之20,
獷=45。+30(100-a)=15?+3000,
vl5>0,
.,?沙隨。的增大而增大,
.??當(dāng)。=20時,,取最小值;
.??當(dāng)〃二20時,少取最小值,最小值為15x20+3000=3300,
???足球購買20個,籃球購買80個,總費用最少,最少總費用為3300元.
24.如圖,一次函數(shù)了=-^x+l的圖象與反比例函數(shù)>的圖象交于點尸(。,2),
與y軸交于點Q.
⑴求a、左的值;
⑵直線N5過點尸,與反比例函數(shù)圖象交于點N,與x軸交于點3,AP=PB,連接
①求△/尸。的面積;
②點M在反比例函數(shù)的圖象上,點N在x軸上,若以點M、N、P、。為頂點的四邊形
是平行四邊形,請求出所有符合條件的點"坐標(biāo).
【答案】(l)a=-2,k=-4
(2)①李②卜川,(一4,1)
【分析】
(1)將尸點坐標(biāo)代入一次函數(shù)解析式可求出。的值,再將坐標(biāo)代入反比例函數(shù)解析式
可求出左的值;
(2)過點/作了軸,交尸。于點H,設(shè)2的坐標(biāo)(80),點/的坐標(biāo)為日耳,根
據(jù)尸的縱坐標(biāo),可以求出〃的值,進(jìn)而求出A點坐標(biāo),求出。點坐標(biāo),根據(jù)可求出77點
坐標(biāo),進(jìn)而求出的長,S&APQ=S^PH+SMHQ,在VNPH和A/H。中,AH為底邊,
高分別是尸點、了軸到的距離,根據(jù)點P、點A的橫坐標(biāo)即可求得,根據(jù)面積公式
試卷第19頁,共30頁
計算即可;
(3)分兩種情況,當(dāng)血W和尸。為對角線時,可根據(jù)平行四邊形的性質(zhì),以及平移來
確定M點縱坐標(biāo),進(jìn)而求出M的坐標(biāo);當(dāng)和NP為對角線時,以及平移來確定M
點縱坐標(biāo),進(jìn)而求出對應(yīng)”點坐標(biāo),從而求解.
【詳解】(1)
解:⑴把點尸(。,2)代入了=-;x+l解得,a=-2,
把尸(-2,2)代入y=!解得,k=-4;
x
(2)
??k=-4,
4
,反比例函數(shù)解析式為y=——.
x
①設(shè)8的坐標(biāo)(。,0),點N的坐標(biāo)為(/,〃),
VAP=PB,尸(-2,2),
〃=4,才巴代入y=_±得:Z=-1,
x
.?.點/(-1,4),
..,一次函數(shù)V=-;x+l的圖象與夕軸交于點
...0的坐標(biāo)為(0,1),
過點N作軸,交PQ于點、H.則點"坐標(biāo)(T,'|
試卷第20頁,共30頁
???Sf。=SBH+S4H2=1+;xAHx1=p
(〃)
②設(shè)點Mm,----j,N,O,
VP(-2,2),。(0,1),點M、N、P、。構(gòu)成平行四邊形;
當(dāng)MN和尸0為對角線時,如下圖:
Q點可看做是將N點先向右平移I?I個單位,再向上平移。。個單位得到,
故M點也是相應(yīng)關(guān)系,即尸點向右平移同個單位,再向上平移。。=1個單位,如下圖:
故W點的縱坐標(biāo)為尸點縱坐標(biāo)加。。:加=2+1=3,
44
即——=3,m=——
m3
試卷第21頁,共30頁
M的坐標(biāo)為w,3
N點可看做是將。點先再向下平移。。個單位,向左平移向個單位得到,
故〃點也是相應(yīng)關(guān)系,即M點是尸點再向下平移個單位,再向左平移同個單位
m
m=-4,
故此時M點坐標(biāo)為:(-4,1);
綜上,”點的坐標(biāo)為:[一*3],(-4,1),
【點睛】
本題考查一次函數(shù)與反比例函數(shù)的綜合,待定系數(shù)法求函數(shù)解析式,平行四邊形的性質(zhì),
解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式,以及平行四邊形的性質(zhì)運用.并利用圖像
的平移找到點與點之間的關(guān)系,從而求解.
25.在中,AB=4C,/8ZC=a,點。是射線/C上的一點,連接2D,將線
段2。繞點。逆時針旋轉(zhuǎn)到。£,旋轉(zhuǎn)角等于a,連接8£、CE.
試卷第22頁,共30頁
A
D
⑴當(dāng)點。在線段/C上時,
①如圖1,若a=60。,則線段CE與的數(shù)量關(guān)系是________,此時,
NDCE=°;
②如圖2,若a=120。,則線段CE與線段4D有怎樣的數(shù)量關(guān)系?請給出說明,并求出
此時NDCE的度數(shù);
⑵當(dāng)點。在射線NC上時,若a=90。,過點/作〃。后交8。于點",AC=2CD,
猜想CE與的數(shù)量關(guān)系,并說明理由.
【答案】⑴①CE=4D,120;②CE=eAD,/DCE=150。,理由見解析
Q)CE=MAM或CE=^~AM,理由見解析
22
【分析】本題是幾何變換綜合題,考查了全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),相似
三角形的判定和性質(zhì),勾股定理等知識,靈活運用這些性質(zhì)解決問題是解題的關(guān)鍵.
(1)①由SAS可證絲ACBE可得C£=/。,△4=/8CE=60。即可求解;②通過
證明△力AD,可得---=---=A/39/BCD=/BAD=12?!?即可求解;
ADAB
(2)分兩種情況討論:當(dāng)點。在線段ZC上時,當(dāng)點。在線段/C延長線上時,通過
設(shè)出CD的長度,由股定理可求CE的長,即可求解.
【詳解】(1)
解:?vAB=AC,ZA=60°,
是等邊三角形,
=ZACB=ZABC=60°,
將BD繞點D逆時針旋轉(zhuǎn)60°得到DE,
DB=DE,ZBDE=60°,
:.ABDE是等邊三角形,
BD=DE=BE,NDBE=60°=ZABC,
試卷第23頁,共30頁
???/ABD=/CBE,
"BDaCBE(SAS),
/.CE=AD,AA=ZBCE=60°,
ZDCE=120o;
故答案為:CE=AD,120;
②CE=&D,ZDCE=150°,理由如下:
?.?AB=AC,4=120。
ZABC=ZACB=30°,
如圖所示,過點/作力廠IBC于尸,
:?BC=2BF,AF=-AB,
2
________巧
:.BF=y/AB2-AF2=—AB,
2
/.BC=s/3AB,
???將。3繞著點。逆時針旋轉(zhuǎn)120。,得到?!?
DB=DE,ABDE=120°,
ADBE=ZDEB=30°=/ABC,
ZABD=ZCBE,
同理可得BE
:./\ABD^/\CBE,
CEBC[T
:.—=—=J3,ZBCD=ZBAD=120°,
ADAB
CE=43AD,ZDCE=ZDCB+ZBCE=150°;
(2)
解:CE=?~AM或CE=叵~AM,理由如下:
22
如圖,當(dāng)點。在線段/C上時,
試卷第24頁,共30頁
A
vAM//DE,
/.ZAMD=NBDE=90°,
AC=2CD,
/.AD=CD,
同理可證明AABDs^CBE,
—亞
ADAB
設(shè)CD=x,則=AB=AC=2x,CE=?x,
BD=^AB-+AD2=&,
???S..^-ABAD^-BD-AM,
/AADRUn22
AB?AD_2x-x_2\/~5x
BDV5x5
如圖,當(dāng)點。在線段ZC的延長線上時
試卷第25頁,共30頁
A
vAM//DE,
ZAMD=NBDE=90°,
':AC=2CD,
???設(shè)CZ)=x,則4Z)=3x,AB=AC-2x,CE=3Cx,
BD=siAB2+AD2=V13x,
???=-AB-AD=-BD-AM,
4ADU22
AB?AD2x-3x6\f\3x
二.AM=-----------=i—=----------,
BDV13x13
.CE_3A/2X_V26
'AM~6V13-2
-------x
13
57
???CE=--AM;
2
綜上所述,CE=?~AM或CE=^^~AM.
22
26.拋物線與x軸交于4,5兩點,與丁軸交于點G頂點為D已知點5(-4,0),C(0,4).拋
物線的對稱軸是直線X=-1,P為拋物線上一動點,點尸的橫坐標(biāo)為加(加>-|),過
點尸作x軸的平行線交拋物線于另一點M.
試卷第26頁,共30頁
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)當(dāng)是等邊三角形時,求加的值及此時三角形的邊長;
⑶過點尸作x軸的垂線尸N,垂足為N,設(shè)直線九W交直線3c于點尸,是否存在這樣
的加值,使MN=2MF?若存在,求出此時正的值;若不存在,請說
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學(xué)物理機械波
- 2024至2030年中國吸塵器塑料件數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國印刷機器行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國EVE眼鏡盒數(shù)據(jù)監(jiān)測研究報告
- 2024年中國造紙機械市場調(diào)查研究報告
- 2024年中國燈管市場調(diào)查研究報告
- 2024年中國四層鍍金豪華海鮮塔市場調(diào)查研究報告
- 2024年中國室外防爆擴音對講話機市場調(diào)查研究報告
- 金銳家具新華店開業(yè)典禮儀式策劃方案
- 美術(shù)教學(xué)中的問題解決策略計劃
- 最新投標(biāo)書密封條
- PCB鍍層與SMT焊接
- 看守所崗位職責(zé)
- 2019年青年英才培養(yǎng)計劃項目申報表
- Sentaurus在ESD防護器件設(shè)計中的應(yīng)用PPT課件
- 《拋物線焦點弦的性質(zhì)探究》學(xué)案
- 人教版小學(xué)二年級數(shù)學(xué)上冊全冊教案【表格式】
- 佛山嶺南新天地項目概況.
- 噴碼機操作手冊
- 會計學(xué)-上海汽車集團股份有限公司應(yīng)收賬款管理內(nèi)部控制問題研究論文
- 甘肅省普通高中畢業(yè)生登記表
評論
0/150
提交評論