北京市朝陽區(qū)北京八十中學2024年高一數學第二學期期末監(jiān)測模擬試題含解析_第1頁
北京市朝陽區(qū)北京八十中學2024年高一數學第二學期期末監(jiān)測模擬試題含解析_第2頁
北京市朝陽區(qū)北京八十中學2024年高一數學第二學期期末監(jiān)測模擬試題含解析_第3頁
北京市朝陽區(qū)北京八十中學2024年高一數學第二學期期末監(jiān)測模擬試題含解析_第4頁
北京市朝陽區(qū)北京八十中學2024年高一數學第二學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市朝陽區(qū)北京八十中學2024年高一數學第二學期期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中秋的促銷活動中,某商場對9月14日9時到14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示,已知12時到14時的銷售額為萬元,則10時到11時的銷售額為()A.萬元 B.萬元 C.萬元 D.萬元2.一空間幾何體的三視圖如下圖所示,則該幾何體的體積為()A.1 B.3 C.6 D.23.《九章算術》是我國古代數學成就的杰出代表作之一,其中《方田》章給出計算弧田面積所用的經驗公式為:弧田面積(弦矢矢),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現有圓心角為,半徑等于6米的弧田,按照上述經驗公式計算所得弧田面積約為()A.12平方米 B.16平方米 C.20平方米 D.24平方米4.已知,取值如下表:014561.3m3m5.67.4畫散點圖分析可知:與線性相關,且求得回歸方程為,則m的值(精確到0.1)為()A.1.5 B.1.6 C.1.7 D.1.85.函數的零點有兩個,求實數的取值范圍()A. B.或 C.或 D.6.某小吃店的日盈利(單位:百元)與當天平均氣溫(單位:℃)之間有如下數據:/℃/百元對上述數據進行分析發(fā)現,與之間具有線性相關關系,則線性回歸方程為()參考公式:A. B.C. D.7.為了研究某大型超市開業(yè)天數與銷售額的情況,隨機抽取了5天,其開業(yè)天數與每天的銷售額的情況如表所示:開業(yè)天數1020304050銷售額/天(萬元)62758189根據上表提供的數據,求得關于的線性回歸方程為,由于表中有一個數據模糊看不清,請你推斷出該數據的值為()A.68 B.68.3 C.71 D.71.38.已知a、b是兩條不同的直線,、是兩個不同的平面,若,,,則下列三個結論:①、②、③.其中正確的個數為()A.0 B.1 C.2 D.39.下列角位于第三象限的是()A. B. C. D.10.在中,,BC邊上的高等于,則A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.數列滿足,則的前60項和為_____.12.若函數有兩個不同的零點,則實數的取值范圍是______.13.九連環(huán)是我國從古至今廣泛流傳的一種益智游戲,它用九個圓環(huán)相連成串,以解開為勝.據明代楊慎《丹鉛總錄》記載:“兩環(huán)互相貫為一,得其關捩,解之為二,又合面為一”.在某種玩法中,用表示解下個圓環(huán)所需的移動最少次數,滿足,且,則解下4個環(huán)所需的最少移動次數為_____.14.若,則______(用表示).15.函數的反函數為____________.16.已知無窮等比數列的首項為,公比為q,且,則首項的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐中,平面平面,,點,,分別為線段,,的中點,點是線段的中點.求證:(1)平面;(2).18.如圖,在長方體中,,點為的中點.(1)求證:直線平面;(2)求證:平面平面;(3)求直線與平面的夾角.19.已知的外接圓的半徑為,內角,,的對邊分別為,,,又向量,,且.(1)求角;(2)求三角形的面積的最大值并求此時的周長.20.求值:(1)一個扇形的面積為1,周長為4,求圓心角的弧度數;(2)已知,計算.21.如圖,在中,點在邊上,,,.(1)求邊的長;(2)若的面積是,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】分析:先根據12時到14時的銷售額為萬元求出總的銷售額,再求10時到11時的銷售額.詳解:設總的銷售額為x,則.10時到11時的銷售額的頻率為1-0.1-0.4-0.25-0.1=0.15.所以10時到11時的銷售額為.故答案為C.點睛:(1)本題主要考查頻率分布直方圖求概率、頻數和總數,意在考查學生對這些基礎知識的掌握水平.(2)在頻率分布直方圖中,所有小矩形的面積和為1,頻率=.2、D【解析】

幾何體是一個四棱錐,四棱錐的底面是一個直角梯形,直角梯形的上底是1,下底是2,垂直于底邊的腰是2,一條側棱與底面垂直,這條側棱長是2.【詳解】由三視圖可知,幾何體是一個四棱錐,四棱錐的底面是一個直角梯形,直角梯形的上底是1,下底是2,垂直于底邊的腰是2,一條側棱與底面垂直,這條側棱長是2.四棱錐的體積是.故選D.【點睛】本題考查由三視圖求幾何體的體積,由三視圖求幾何體的體積,關鍵是由三視圖還原幾何體,同時還需掌握求體積的常用技巧如:割補法和等價轉化法.3、C【解析】

在中,由題意OA=4,∠DAO=,即可求得OD,AD的值,根據題意可求矢和弦的值,即可利用公式計算求值得解.【詳解】如圖,由題意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面積=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故選:C【點睛】本題考查扇形的面積公式,考查數學閱讀能力和數學運算能力,屬于中檔題.4、C【解析】

根據表格中的數據,求得樣本中心為,代入回歸直線方程,即可求解.【詳解】由題意,根據表格中的數據,可得,,即樣本中心為,代入回歸直線方程,即,解得,故選C.【點睛】本題主要考查了回歸直線方程的應用,其中解答中熟記回歸直線方程的基本特征是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5、B【解析】

由題意可得,的圖象(紅色部分)和直線有2個交點,數形結合求得的范圍.【詳解】由題意可得的圖象(紅色部分)和直線有2個交點,如圖所示:故有或,故選:B.【點睛】已知函數零點(方程根)的個數,求參數取值范圍的三種常用的方法:(1)直接法,直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍;(2)分離參數法,先將參數分離,轉化成求函數值域問題加以解決;(3)數形結合法,先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解.一是轉化為兩個函數的圖象的交點個數問題,畫出兩個函數的圖象,其交點的個數就是函數零點的個數,二是轉化為的圖象的交點個數問題.6、B【解析】

計算出,,把數據代入公式計算,即可得到答案.【詳解】由題可得:,,,,;所以,,則線性回歸方程為;故答案選B【點睛】本題考查線性回歸方程的求解,考查學生的計算能力,屬于基礎題.7、A【解析】

根據表中數據計算,再代入線性回歸方程求得,進而根據平均數的定義求出所求的數據.【詳解】根據表中數據,可得,代入線性回歸方程中,求得,則表中模糊不清的數據是,故選:B.【點睛】本題考查了線性回歸方程過樣本中心點的應用問題,是基礎題.8、C【解析】

根據題意,,,,則有,因此,,不難判斷.【詳解】因為,,,則有,所以,,所以①正確,②不正確,③正確,則其中正確命題的個數為2.故選C【點睛】本題考查空間中直線與平面之間的位置關系,考查空間推理能力,屬于簡單題.9、D【解析】

根據第三象限角度的范圍,結合選項,進行分析選擇.【詳解】第三象限的角度范圍是.對A:,是第二象限的角,故不滿足題意;對B:是第二象限的角度,故不滿足題意;對C:是第二象限的角度,故不滿足題意;對D:,是第三象限的角度,滿足題意.故選:D.【點睛】本題考查角度范圍的判斷,屬基礎題.10、D【解析】試題分析:設邊上的高線為,則,所以.由正弦定理,知,即,解得,故選D.【考點】正弦定理【方法點撥】在平面幾何圖形中求相關的幾何量時,需尋找各個三角形之間的聯(lián)系,交叉使用公共條件,常常將所涉及到已知幾何量與所求幾何集中到某一個三角形,然后選用正弦定理與余弦定理求解.二、填空題:本大題共6小題,每小題5分,共30分。11、1830【解析】

由題意可得,,,,,,…,,變形可得,,,,,,,,…,利用數列的結構特征,求出的前60項和.【詳解】解:,∴,,,,,,…,,∴,,,,,,,,…,從第一項開始,依次取2個相鄰奇數項的和都等于2,從第二項開始,依次取2個相鄰偶數項的和構成以8為首項,以16為公差的等差數列,的前60項和為,故答案為:.【點睛】本題主要考查遞推公式的應用,考查利用構造等差數列求數列的前項和,屬于中檔題.12、【解析】

令,可得,從而將問題轉化為和的圖象有兩個不同交點,作出圖形,可求出答案.【詳解】由題意,令,則,則和的圖象有兩個不同交點,作出的圖象,如下圖,是過點的直線,當直線斜率時,和的圖象有兩個交點.故答案為:.【點睛】本題考查函數零點問題,考查函數圖象的應用,考查學生的計算求解能力,屬于中檔題.13、7【解析】

利用的通項公式,依次求出,從而得到,即可得到答案?!驹斀狻坑捎诒硎窘庀聜€圓環(huán)所需的移動最少次數,滿足,且所以,,故,所以解下4個環(huán)所需的最少移動次數為7故答案為7.【點睛】本題考查數列的遞推公式,屬于基礎題。14、【解析】

直接利用誘導公式化簡求解即可.【詳解】解:,則,故答案為:.【點睛】本題考查誘導公式的應用,三角函數化簡求值,考查計算能力,屬于基礎題.15、【解析】

首先求出在區(qū)間的值域,再由表示的含義,得到所求函數的反函數.【詳解】因為,所以,.所以的反函數是.故答案為:【點睛】本題主要考查反函數定義,同時考查了三角函數的值域問題,屬于簡單題.16、【解析】

根據極限存在得出,對分、和三種情況討論得出與之間的關系,可得出的取值范圍.【詳解】由于,則.①當時,則,;②當時,則,;③當時,,解得.綜上所述:首項的取值范圍是,故答案為:.【點睛】本題考查極限的應用,要結合極限的定義得出公比的取值范圍,同時要對公比的取值范圍進行分類討論,考查分類討論思想的應用,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)連AF交BE于Q,連QO,推導出Q是△PAB的重心,從而FG∥QO,由此能證明FG∥平面EBO.(2)推導出BO⊥AC,從而BO⊥面PAC,進而BO⊥PA,再求出OE⊥PA,由此能證明PA⊥平面EBO,利用線面垂直的性質可證PA⊥BE.【詳解】(1)連接AF交BE于Q,連接QO,因為E,F分別為邊PA,PB的中點,所以Q為△PAB的重心,可得:2,又因為O為線段AC的中點,G是線段CO的中點,所以2,于是,所以FG∥QO,因為FG?平面EBO,QO?平面EBO,所以FG∥平面EBO.(2)因為O為邊AC的中點,AB=BC,所以BO⊥AC,因為平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO?平面ABC,所以BO⊥平面PAC,因為PA?平面PAC,所以BO⊥PA,因為點E,O分別為線段PA,AC的中點,所以EO∥PC,因為PA⊥PC,所以PA⊥EO,又BO∩OE=O,BO,EO?平面EBO,所以PA⊥平面EBO,因為BE?平面EBO,所以PA⊥BE.【點睛】本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的關系等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、數形結合思想,是中檔題.18、(1)見證明;(2)見證明;(3)【解析】

(1)連接,交于,則為中點,連接OP,可證明,從而可證明直線平面;(2)先證明AC⊥BD,,可得到平面,然后結合平面,可知平面平面;(3)連接,由(2)知,平面平面,可知即為與平面的夾角,求解即可.【詳解】(1)證明:連接,交于,則為中點,連接OP,∵P為的中點,∴,∵OP?平面,?平面,∴平面;(2)證明:長方體中,,底面是正方形,則AC⊥BD,又⊥面,則.∵?平面,?平面,,∴平面.∵平面,∴平面平面;(3)解:連接,由(2)知,平面平面,∴即為與平面的夾角,在長方體中,∵,∴.在中,.∴直線與平面的夾角為.【點睛】本題考查了線面平行、面面垂直的證明,考查了線面角的求法,考查了學生的空間想象能力和計算求解能力,屬于中檔題.19、(1).(2),周長為.【解析】

(1)由,利用坐標表示化簡,結合余弦定理求角C(2)利用(1)中,應用正弦定理和基本不等式,即可求出面積的最大值,此時三角形為正三角即可求周長.【詳解】(1)∵,∴,且,由正弦定理得:,化簡得:.由余弦定理:,∴,∵,∴.(2)∵,∴(當且僅當時取“”),所以,,此時,為正三角形,此時三角形的周長為.【點睛】本題主要考查了利用數量積判斷兩個平面向量的垂直關系,正弦定理,余弦定理,基本不等式,屬于中檔題.20、(1);(2).【解析】

(1)設出扇形的半徑為,弧長為,利用面積、周長的值,得到關于的方程;(2)由已知條件得到,再代入所求的式子進行約分求值.【詳解】(1)設扇形的半徑為,弧長為,則解得:所以圓心角的弧度數.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論