2024屆山西省陵川第一中學(xué)校、澤州一中等四校高一下數(shù)學(xué)期末監(jiān)測模擬試題含解析_第1頁
2024屆山西省陵川第一中學(xué)校、澤州一中等四校高一下數(shù)學(xué)期末監(jiān)測模擬試題含解析_第2頁
2024屆山西省陵川第一中學(xué)校、澤州一中等四校高一下數(shù)學(xué)期末監(jiān)測模擬試題含解析_第3頁
2024屆山西省陵川第一中學(xué)校、澤州一中等四校高一下數(shù)學(xué)期末監(jiān)測模擬試題含解析_第4頁
2024屆山西省陵川第一中學(xué)校、澤州一中等四校高一下數(shù)學(xué)期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山西省陵川第一中學(xué)校、澤州一中等四校高一下數(shù)學(xué)期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)等差數(shù)列的前n項和為,若,則()A.3 B.4 C.5 D.62.若平面向量a與b的夾角為60°,|b|=4,(aA.2B.4C.6D.123.角的終邊落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知點在第三象限,則角的終邊在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.定義在上的函數(shù)若關(guān)于的方程(其中)有個不同的實根,,…,,則()A. B. C. D.6.如圖,在長方體中,M,N分別是棱BB1,B1C1的中點,若∠CMN=90°,則異面直線AD1和DM所成角為()A.30° B.45°C.60° D.90°7.小金同學(xué)在學(xué)校中貫徹著“邊玩邊學(xué)”的學(xué)風(fēng),他在“漢諾塔”的游戲中發(fā)現(xiàn)了數(shù)列遞推的奧妙:有、、三個木樁,木樁上套有編號分別為、、、、、、的七個圓環(huán),規(guī)定每次只能將一個圓環(huán)從一個木樁移動到另一個木樁,且任意一個木樁上不能出現(xiàn)“編號較大的圓環(huán)在編號較小的圓環(huán)之上”的情況,現(xiàn)要將這七個圓環(huán)全部套到木樁上,則所需的最少次數(shù)為()A. B. C. D.8.在中,若,則的形狀是()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不能確定9.已知向量a→=(2,0),|b→|=1,a→?A.2π3 B.π3 C.π10.已知、是球的球面上的兩點,,點為該球面上的動點,若三棱錐體積的最大值為,則球的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.等比數(shù)列前n項和為,若,則______.12.在直三棱柱中,,,,則異面直線與所成角的余弦值是_____________.13.在中,角的對邊分別為,若,則_______.(僅用邊表示)14.已知,則的值為______15.某中學(xué)高一年級有學(xué)生1200人,高二年級有學(xué)生900人,高三年級有學(xué)生1500人,現(xiàn)按年級用分層抽樣的方法從這三個年級的學(xué)生中抽取一個容量為720的樣本進行某項研究,則應(yīng)從高三年級學(xué)生中抽取_____人.16.如圖,為測量山高,選擇和另一座山的山頂為測量觀測點,從點測得的仰角,點的仰角以及;從點測得;已知山高,則山高__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在等比數(shù)列中,.(1)求的通項公式;(2)若,求數(shù)列的前項和.18.某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題統(tǒng)計結(jié)果如圖表所示.組號

分組

回答正確

的人數(shù)

回答正確的人數(shù)

占本組的概率

第1組

5

0.5

第2組

0.9

第3組

27

第4組

0.36

第5組

3

(Ⅰ)分別求出的值;(Ⅱ)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.19.甲、乙兩位同學(xué)參加數(shù)學(xué)應(yīng)用知識競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次測試成績中隨機抽取8次,記錄如下:(Ⅰ)分別估計甲、乙兩名同學(xué)在培訓(xùn)期間所有測試成績的平均分;(Ⅱ)從上圖中甲、乙兩名同學(xué)高于85分的成績中各選一個成績作為參考,求甲、乙兩人成績都在90分以上的概率;(Ⅲ)現(xiàn)要從甲、乙中選派一人參加正式比賽,根據(jù)所抽取的兩組數(shù)據(jù)分析,你認為選派哪位同學(xué)參加較為合適?說明理由.20.如圖,在三棱柱中(底面為正三角形),平面,,,,是邊的中點.(1)證明:平面平面.(2)求點到平面的距離.21.已知中,,,點D在AB上,,并且.(1)求BC的長度;(2)若點E為AB中點,求CE的長度.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

由又,可得公差,從而可得結(jié)果.【詳解】是等差數(shù)列又,∴公差,,故選C.【點睛】本題主要考查等差數(shù)列的通項公式與求和公式的應(yīng)用,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,屬于中檔題.2、C【解析】∵(a+2b)·(a-3b)=-72,∴3、C【解析】

由,即可判斷.【詳解】,則與的終邊相同,則角的終邊落在第三象限故選:C【點睛】本題主要考查了判斷角的終邊所在象限,屬于基礎(chǔ)題.4、B【解析】

根據(jù)同角三角函數(shù)間基本關(guān)系和各象限三角函數(shù)符號的情況即可得到正確選項.【詳解】因為點在第三象限,則,,所以,則可知角的終邊在第二象限.故選:B.【點睛】本題考查各象限三角函數(shù)符號的判定,屬基礎(chǔ)題.相關(guān)知識總結(jié)如下:第一象限:;第二象限:;第三象限:;第四象限:.5、C【解析】畫出函數(shù)的圖象,如圖,由圖可知函數(shù)的圖象關(guān)于對稱,解方程方程,得或,時有三個根,,時有兩個根,所以關(guān)于的方程共有五個根,,,故選C.【方法點睛】本題主要考查函數(shù)的圖象與性質(zhì)以及函數(shù)與方程思想、數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,.函數(shù)圖象是函數(shù)的一種表達形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來,圖象的應(yīng)用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì).6、D【解析】

建立空間直角坐標(biāo)系,結(jié)合,求出的坐標(biāo),利用向量夾角公式可求.【詳解】以為坐標(biāo)原點,所在直線分別為軸,建立空間直角坐標(biāo)系,如圖,設(shè),則,,,因為,所以,即有.因為,所以,即異面直線和所成角為.故選:D.【點睛】本題主要考查異面直線所成角的求解,異面直線所成角主要利用幾何法和向量法,幾何法側(cè)重于把異面直線所成角平移到同一個三角形內(nèi),結(jié)合三角形知識求解;向量法側(cè)重于構(gòu)建坐標(biāo)系,利用向量夾角公式求解.7、B【解析】

假設(shè)樁上有個圓環(huán),將個圓環(huán)從木樁全部套到木樁上,需要最少的次數(shù)為,根據(jù)題意求出數(shù)列的遞推公式,利用遞推公式求出數(shù)列的通項公式,從而得出的值,可得出結(jié)果.【詳解】假設(shè)樁上有個圓環(huán),將個圓環(huán)從木樁全部套到木樁上,需要最少的次數(shù)為,可這樣操作,先將個圓環(huán)從木樁全部套到木樁上,至少需要的次數(shù)為,然后將最大的圓環(huán)從木樁套在木樁上,需要次,在將木樁上個圓環(huán)從木樁套到木樁上,至少需要的次數(shù)為,所以,,易知.設(shè),得,對比得,,且,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,,因此,,故選:B.【點睛】本題考查數(shù)列遞推公式的應(yīng)用,同時也考查了利用待定系數(shù)法求數(shù)列的通項,解題的關(guān)鍵就是利用題意得出數(shù)列的遞推公式,考查推理能力與運算求解能力,屬于中等題.8、A【解析】

由正弦定理得,再由余弦定理求得,得到,即可得到答案.【詳解】因為在中,滿足,由正弦定理知,代入上式得,又由余弦定理可得,因為C是三角形的內(nèi)角,所以,所以為鈍角三角形,故選A.【點睛】本題主要考查了利用正弦定理、余弦定理判定三角形的形狀,其中解答中合理利用正、余弦定理,求得角C的范圍是解答本題的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、A【解析】

直接利用向量夾角公式得到答案.【詳解】解:向量a→=(2,0),|b→|=1,a可得cos<a→則a→與b的夾角為:2π故選:A.【點睛】本題考查向量的數(shù)量積的應(yīng)用,向量的夾角的求法,是基本知識的考查.10、A【解析】

當(dāng)點位于垂直于面的直徑端點時,三棱錐的體積最大,利用三棱錐體積的最大值為,求出半徑,即可求出球的表面積.【詳解】如圖所示,當(dāng)點位于垂直于面的直徑端點時,三棱錐的體積最大,設(shè)球的半徑為,此時,.因此,球的表面積為.故選:A.【點睛】本題考查球的半徑與表面積的計算,確定點的位置是關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)等比數(shù)列的性質(zhì)得到成等比,從而列出關(guān)系式,又,接著用表示,代入到關(guān)系式中,可求出的值.【詳解】因為等比數(shù)列的前n項和為,則成等比,且,所以,又因為,即,所以,整理得.故答案為:.【點睛】本題考查學(xué)生靈活運用等比數(shù)列的性質(zhì)化簡求值,是一道基礎(chǔ)題。解決本題的關(guān)鍵是根據(jù)等比數(shù)列的性質(zhì)得到成等比.12、【解析】

先找出線面角,運用余弦定理進行求解【詳解】連接交于點,取中點,連接,則,連接為異面直線與所成角在中,,,同理可得,,異面直線與所成角的余弦值是故答案為【點睛】本題主要考查了異面直線所成的角,考查了空間想象能力,運算能力和推理論證能力,屬于基礎(chǔ)題.13、【解析】

直接利用正弦定理和三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.【詳解】由正弦定理,結(jié)合可得,即,即,從而.【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,主要考察學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.14、【解析】

根據(jù)兩角差的正弦公式,化簡,解出的值,再平方,即可求解.【詳解】由題意,可知,,平方可得則故答案為:【點睛】本題考查三角函數(shù)常用公式關(guān)系轉(zhuǎn)換,屬于基礎(chǔ)題.15、1.【解析】

先求得高三學(xué)生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學(xué)生占的比例為,所以應(yīng)從高三年級學(xué)生中抽取的人數(shù)為.【點睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.16、【解析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)將已知條件化為和后,聯(lián)立解出和后即可得到通項公式;(2)根據(jù)錯位相減法可得結(jié)果.【詳解】(1)因為,所以解得故的通項公式為.(2)由(1)可得,則,①,②①-②得.所以故.【點睛】本題考查了等比數(shù)列通項公式基本量的計算,考查了錯位相減法求數(shù)列的和,屬于中檔題.18、(Ⅰ);(Ⅱ)第2組抽人;第3組抽3人;第4組抽1人;(III).【解析】

(Ⅰ)由頻率表中第1組數(shù)據(jù)可知,第1組總?cè)藬?shù)為,再結(jié)合頻率分布直方圖可知∴=100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,,(Ⅱ)第2,3,4組中回答正確的共有54人.∴利用分層抽樣在54人中抽取6人,每組分別抽取的人數(shù)為:第2組:人,第3組:人,第4組:人.(Ⅲ)設(shè)第2組的2人為、,第3組的3人為、、,第4組的1人為,則從6人中抽2人所有可能的結(jié)果有:,,,,,,,,,,,,,,,共15個基本事件,其中第2組至少有1人被抽中的有,,,,,,,,這9個基本事件.∴第2組至少有1人獲得幸運獎的概率為本題考查分層抽樣方法、統(tǒng)計基礎(chǔ)知識與等可能事件的概率.注意等可能事件中的基本事件數(shù)的準確性.19、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】

(Ⅰ)由莖葉圖中的數(shù)據(jù)計算、,進而可得平均分的估計值;(Ⅱ)求出基本事件數(shù),計算所求的概率值;(Ⅲ)答案不唯一.從平均數(shù)與方差考慮,派甲參賽比較合適;從成績優(yōu)秀情況分析,派乙參賽比較合適.【詳解】(Ⅰ)由莖葉圖中的數(shù)據(jù),計算,,由樣本估計總體得,甲、乙兩名同學(xué)在培訓(xùn)期間所有測試成績的平均分分別均約為分.(Ⅱ)從甲、乙兩名同學(xué)高于分的成績中各選一個成績,基本事件是,甲、乙兩名同學(xué)成績都在分以上的基本事件為,故所求的概率為.(Ⅲ)答案不唯一.派甲參賽比較合適,理由如下:由(Ⅰ)知,,,,因為,,所有甲的成績較穩(wěn)定,派甲參賽比較合適;派乙參賽比較合適,理由如下:從統(tǒng)計的角度看,甲獲得分以上(含分)的頻率為,乙獲得分以上(含分)的頻率為,因為,所有派乙參賽比較合適.【點睛】本題考查了利用莖葉圖計算平均數(shù)與方差的應(yīng)用問題,屬于基礎(chǔ)題.20、(1)見解析(2)【解析】

(1)由,為的中點,可得,又平面,可得,即可證明平面,結(jié)合平面,即可證明平面平面;(2)設(shè)點到平面的距離為,由等體積法,,即,求解即可.【詳解】(1)證明:,為的中點,.又平面,平面,.又,平面.又平面,平面平面.(2)解:由(1)知,平面,平面,.,,,.設(shè)點到平面的距離為,由,得,即,,即點到平面的距離為.【點睛】本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論