長(zhǎng)春市第七十二中學(xué)2024屆中考數(shù)學(xué)押題試卷含解析_第1頁
長(zhǎng)春市第七十二中學(xué)2024屆中考數(shù)學(xué)押題試卷含解析_第2頁
長(zhǎng)春市第七十二中學(xué)2024屆中考數(shù)學(xué)押題試卷含解析_第3頁
長(zhǎng)春市第七十二中學(xué)2024屆中考數(shù)學(xué)押題試卷含解析_第4頁
長(zhǎng)春市第七十二中學(xué)2024屆中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)春市第七十二中學(xué)2024屆中考數(shù)學(xué)押題試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關(guān)系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y32.如圖,已知,那么下列結(jié)論正確的是()A. B. C. D.3.如圖,AB是的直徑,點(diǎn)C,D在上,若,則的度數(shù)為A. B. C. D.4.下列運(yùn)算正確的是()A.a(chǎn)2+a3=a5 B.(a3)2÷a6=1 C.a(chǎn)2?a3=a6 D.(2+3)2=55.小剛從家去學(xué)校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車勻速行駛一段時(shí)后到達(dá)學(xué)校,小剛從家到學(xué)校行駛路程s(單位:m)與時(shí)間r(單位:min)之間函數(shù)關(guān)系的大致圖象是()A. B. C. D.6.點(diǎn)P(1,﹣2)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)7.若一組數(shù)據(jù)1、、2、3、4的平均數(shù)與中位數(shù)相同,則不可能是下列選項(xiàng)中的()A.0 B.2.5 C.3 D.58.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是()A.相交B.內(nèi)切C.外離D.內(nèi)含9.下列運(yùn)算,結(jié)果正確的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+410.如圖,兩個(gè)同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長(zhǎng)為()A.2πcm B.4πcm C.6πcm D.8πcm11.在△ABC中,點(diǎn)D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.12.如圖,將△ABC沿著DE剪成一個(gè)小三角形ADE和一個(gè)四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長(zhǎng)度如圖所示,則剪出的小三角形ADE應(yīng)是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,點(diǎn)A在雙曲線y=的第一象限的那一支上,AB垂直于y軸與點(diǎn)B,點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)D為OB的中點(diǎn),若△ADE的面積為3,則k的值為_____.14.如圖,已知△ABC中,∠ABC=50°,P為△ABC內(nèi)一點(diǎn),過點(diǎn)P的直線MN分別交AB、BC于點(diǎn)M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為_____15.如果一個(gè)正多邊形的中心角為72°,那么這個(gè)正多邊形的邊數(shù)是.16.如果一個(gè)直角三角形的兩條直角邊的長(zhǎng)分別為5、12,則斜邊上的高的長(zhǎng)度為______.17.已知拋物線與直線在之間有且只有一個(gè)公共點(diǎn),則的取值范圍是__.18.如果,那么______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解方程組:.20.(6分)如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,的半徑為,P為上一動(dòng)點(diǎn).點(diǎn)B,C的坐標(biāo)分別為______,______;是否存在點(diǎn)P,使得為直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;連接PB,若E為PB的中點(diǎn),連接OE,則OE的最大值______.21.(6分)為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問題:(1)此次共調(diào)查了多少人?(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(4)若該校有1500名學(xué)生,請(qǐng)估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?22.(8分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關(guān)系是,位置關(guān)系是.(2)探究證明:將圖1中的△CDE繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AE與MP、BD分別交于點(diǎn)G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點(diǎn)C任意旋轉(zhuǎn),若AC=4,CD=2,請(qǐng)直接寫出△PMN面積的最大值.23.(8分)如圖1,四邊形ABCD中,,,點(diǎn)P為DC上一點(diǎn),且,分別過點(diǎn)A和點(diǎn)C作直線BP的垂線,垂足為點(diǎn)E和點(diǎn)F.證明:∽;若,求的值;如圖2,若,設(shè)的平分線AG交直線BP于當(dāng),時(shí),求線段AG的長(zhǎng).24.(10分)某同學(xué)用兩個(gè)完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動(dòng),將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設(shè)AD=x(0≤x≤4),兩個(gè)直角三角形紙片重疊部分的面積為y,試求出y與x的函數(shù)關(guān)系式;(2)在運(yùn)動(dòng)過程中,四邊形CDBF能否為正方形,若能,請(qǐng)指出此時(shí)點(diǎn)D的位置,并說明理由;若不能,請(qǐng)你添加一個(gè)條件,并說明四邊形CDBF為正方形?25.(10分)對(duì)于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點(diǎn)的“理想值”,記作.如的“理想值”.(1)①若點(diǎn)在直線上,則點(diǎn)的“理想值”等于_______;②如圖,,的半徑為1.若點(diǎn)在上,則點(diǎn)的“理想值”的取值范圍是_______.(2)點(diǎn)在直線上,的半徑為1,點(diǎn)在上運(yùn)動(dòng)時(shí)都有,求點(diǎn)的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點(diǎn),當(dāng)時(shí),畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)26.(12分)如圖,矩形ABCD中,點(diǎn)E為BC上一點(diǎn),DF⊥AE于點(diǎn)F,求證:∠AEB=∠CDF.27.(12分)如圖,在⊙O中,弦AB與弦CD相交于點(diǎn)G,OA⊥CD于點(diǎn)E,過點(diǎn)B的直線與CD的延長(zhǎng)線交于點(diǎn)F,AC∥BF.(1)若∠FGB=∠FBG,求證:BF是⊙O的切線;(2)若tan∠F=,CD=a,請(qǐng)用a表示⊙O的半徑;(3)求證:GF2﹣GB2=DF?GF.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)x1<x2<0<x1,判斷出三點(diǎn)所在的象限,再根據(jù)函數(shù)的增減性即可得出結(jié)論.【詳解】∵反比例函數(shù)y=中,k=1>0,∴此函數(shù)圖象的兩個(gè)分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點(diǎn)C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【點(diǎn)睛】本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),先根據(jù)題意判斷出函數(shù)圖象所在的象限及三點(diǎn)所在的象限是解答此題的關(guān)鍵.2、A【解析】

已知AB∥CD∥EF,根據(jù)平行線分線段成比例定理,對(duì)各項(xiàng)進(jìn)行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點(diǎn)睛】本題考查平行線分線段成比例定理,找準(zhǔn)對(duì)應(yīng)關(guān)系,避免錯(cuò)選其他答案.3、B【解析】試題解析:連接AC,如圖,∵AB為直徑,∴∠ACB=90°,∴∴故選B.點(diǎn)睛:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等.4、B【解析】

利用合并同類項(xiàng)對(duì)A進(jìn)行判斷;根據(jù)冪的乘方和同底數(shù)冪的除法對(duì)B進(jìn)行判斷;根據(jù)同底數(shù)冪的乘法法則對(duì)C進(jìn)行判斷;利用完全平方公式對(duì)D進(jìn)行判斷.【詳解】解:A、a2與a3不能合并,所以A選項(xiàng)錯(cuò)誤;B、原式=a6÷a6=1,所以A選項(xiàng)正確;C、原式=a5,所以C選項(xiàng)錯(cuò)誤;D、原式=2+26+3=5+26,所以D選項(xiàng)錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查同底數(shù)冪的乘除、二次根式的混合運(yùn)算,:二次根式的混合運(yùn)算先把二次根式化為最簡(jiǎn)二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.解題關(guān)鍵是在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.5、B【解析】【分析】根據(jù)小剛行駛的路程與時(shí)間的關(guān)系,確定出圖象即可.【詳解】小剛從家到學(xué)校,先勻速步行到車站,因此S隨時(shí)間t的增長(zhǎng)而增長(zhǎng),等了幾分鐘后坐上了公交車,因此時(shí)間在增加,S不增長(zhǎng),坐上了公交車,公交車沿著公路勻速行駛一段時(shí)間后到達(dá)學(xué)校,因此S又隨時(shí)間t的增長(zhǎng)而增長(zhǎng),故選B.【點(diǎn)睛】本題考查了函數(shù)的圖象,認(rèn)真分析,理解題意,確定出函數(shù)圖象是解題的關(guān)鍵.6、C【解析】關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),由此可得P(1,﹣2)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(﹣1,﹣2),故選C.【點(diǎn)睛】本題考查了關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo),正確地記住關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)特征是關(guān)鍵.關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn):縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù).7、C【解析】

解:這組數(shù)據(jù)1、a、2、1、4的平均數(shù)為:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)將這組數(shù)據(jù)從小到大的順序排列后為a,1,2,1,4,中位數(shù)是2,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=2,解得a=0,符合排列順序.(2)將這組數(shù)據(jù)從小到大的順序排列后為1,a,2,1,4,中位數(shù)是2,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=2,解得a=0,不符合排列順序.(1)將這組數(shù)據(jù)從小到大的順序排列后1,2,a,1,4,中位數(shù)是a,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=a,解得a=2.5,符合排列順序.(4)將這組數(shù)據(jù)從小到大的順序排列后為1,2,1,a,4,中位數(shù)是1,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=1,解得a=5,不符合排列順序.(5)將這組數(shù)據(jù)從小到大的順序排列為1,2,1,4,a,中位數(shù)是1,平均數(shù)是0.2a+2,∵這組數(shù)據(jù)1、a、2、1、4的平均數(shù)與中位數(shù)相同,∴0.2a+2=1,解得a=5;符合排列順序;綜上,可得:a=0、2.5或5,∴a不可能是1.故選C.【點(diǎn)睛】本題考查中位數(shù);算術(shù)平均數(shù).8、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據(jù)圓心距與半徑之間的數(shù)量關(guān)系可知⊙O1與⊙O2相交.故選A.考點(diǎn):圓與圓的位置關(guān)系.9、B【解析】

直接利用積的乘方運(yùn)算法則、合并同類項(xiàng)法則和單項(xiàng)式除以單項(xiàng)式運(yùn)算法則計(jì)算得出答案.【詳解】A.m2+m2=2m2,故此選項(xiàng)錯(cuò)誤;B.2m2n÷mn=4m,正確;C.(3mn2)2=9m2n4,故此選項(xiàng)錯(cuò)誤;D.(m+2)2=m2+4m+4,故此選項(xiàng)錯(cuò)誤.故答案選:B.【點(diǎn)睛】本題考查了乘方運(yùn)算法則、合并同類項(xiàng)法則和單項(xiàng)式除以單項(xiàng)式運(yùn)算法則,解題的關(guān)鍵是熟練的掌握乘方運(yùn)算法則、合并同類項(xiàng)法則和單項(xiàng)式除以單項(xiàng)式運(yùn)算法則.10、B【解析】

首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進(jìn)而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長(zhǎng)公式即可求出劣弧AB的長(zhǎng).【詳解】解:如圖,連接OC,AO,

∵大圓的一條弦AB與小圓相切,

∴OC⊥AB,

∵OA=6,OC=3,

∴OA=2OC,

∴∠A=30°,

∴∠AOC=60°,

∴∠AOB=120°,

∴劣弧AB的長(zhǎng)==4π,

故選B.【點(diǎn)睛】本題考查切線的性質(zhì),弧長(zhǎng)公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.11、D【解析】

如圖,∵AD=1,BD=3,∴,當(dāng)時(shí),,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據(jù)選項(xiàng)A、B、C的條件都不能推出DE∥BC,故選D.12、C【解析】

利用相似三角形的性質(zhì)即可判斷.【詳解】設(shè)AD=x,AE=y(tǒng),∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點(diǎn)睛】考查平行線的性質(zhì),相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、.【解析】

由AE=3EC,△ADE的面積為3,可知△ADC的面積為4,再根據(jù)點(diǎn)D為OB的中點(diǎn),得到△ADC的面積為梯形BOCA面積的一半,即梯形BOCA的面積為8,設(shè)A(x,),從而表示出梯形BOCA的面積關(guān)于k的等式,求解即可.【詳解】如圖,連接DC,∵AE=3EC,△ADE的面積為3,∴△CDE的面積為1.∴△ADC的面積為4.∵點(diǎn)A在雙曲線y=的第一象限的那一支上,∴設(shè)A點(diǎn)坐標(biāo)為(x,).∵OC=2AB,∴OC=2x.∵點(diǎn)D為OB的中點(diǎn),∴△ADC的面積為梯形BOCA面積的一半,∴梯形BOCA的面積為8.∴梯形BOCA的面積=,解得.【點(diǎn)睛】反比例函數(shù)綜合題,曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系,相似三角形的判定和性質(zhì),同底三角形面積的計(jì)算,梯形中位線的性質(zhì).14、115°【解析】

根據(jù)三角形的內(nèi)角和得到∠BAC+∠ACB=130°,根據(jù)線段的垂直平分線的性質(zhì)得到AM=PM,PN=CN,由等腰三角形的性質(zhì)得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到結(jié)論.【詳解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂線上,N在PC的中垂線上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,∴∠APC=115°,故答案為:115°【點(diǎn)睛】本題考查了線段的垂直平分線的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和,熟練掌握線段的垂直平分線的性質(zhì)是解題的關(guān)鍵.15、5【解析】試題分析:中心角的度數(shù)=,考點(diǎn):正多邊形中心角的概念.16、【解析】

利用勾股定理求出斜邊長(zhǎng),再利用面積法求出斜邊上的高即可.【詳解】解:∵直角三角形的兩條直角邊的長(zhǎng)分別為5,12,∴斜邊為=13,∵三角形的面積=×5×12=×13h(h為斜邊上的高),∴h=.故答案為:.【點(diǎn)睛】考查了勾股定理,以及三角形面積公式,熟練掌握勾股定理是解本題的關(guān)鍵.17、或.【解析】

聯(lián)立方程可得,設(shè),從而得出的圖象在上與x軸只有一個(gè)交點(diǎn),當(dāng)△時(shí),求出此時(shí)m的值;當(dāng)△時(shí),要使在之間有且只有一個(gè)公共點(diǎn),則當(dāng)x=-2時(shí)和x=2時(shí)y的值異號(hào),從而求出m的取值范圍;【詳解】聯(lián)立可得:,令,拋物線與直線在之間有且只有一個(gè)公共點(diǎn),即的圖象在上與x軸只有一個(gè)交點(diǎn),當(dāng)△時(shí),即△解得:,當(dāng)時(shí),當(dāng)時(shí),,滿足題意,當(dāng)△時(shí),令,,令,,,令代入解得:,此方程的另外一個(gè)根為:,故也滿足題意,故的取值范圍為:或故答案為:或.【點(diǎn)睛】此題考查的是根據(jù)二次函數(shù)與一次函數(shù)的交點(diǎn)問題,求函數(shù)中參數(shù)的取值范圍,掌握把函數(shù)的交點(diǎn)問題轉(zhuǎn)化為一元二次方程解的問題是解決此題的關(guān)鍵.18、;【解析】

先對(duì)等式進(jìn)行轉(zhuǎn)換,再求解.【詳解】∵∴3x=5x-5y∴2x=5y∴【點(diǎn)睛】本題考查的是分式,熟練掌握分式是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、;;.【解析】分析:把原方程組中的第二個(gè)方程通過分解因式降次,轉(zhuǎn)化為兩個(gè)一次方程,再分別和第一方程組合成兩個(gè)新的方程組,分別解這兩個(gè)新的方程組即可求得原方程組的解.詳解:由方程可得,,;則原方程組轉(zhuǎn)化為(Ⅰ)或(Ⅱ),解方程組(Ⅰ)得,解方程組(Ⅱ)得,∴原方程組的解是.點(diǎn)睛:本題考查的是二元二次方程組的解法,解題的要點(diǎn)有兩點(diǎn):(1)把原方程組中的第2個(gè)方程通過分解因式降次轉(zhuǎn)化為兩個(gè)二元一次方程,并分別和第1個(gè)方程組合成兩個(gè)新的方程組;(2)將兩個(gè)新的方程組消去y,即可得到關(guān)于x的一元二次方程.20、(1)B(1,0),C(0,﹣4);(2)點(diǎn)P的坐標(biāo)為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】試題分析:(1)在拋物線解析式中令y=0可求得B點(diǎn)坐標(biāo),令x=0可求得C點(diǎn)坐標(biāo);(2)①當(dāng)PB與⊙相切時(shí),△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質(zhì)得到=2,設(shè)OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標(biāo),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當(dāng)BC⊥PC時(shí),△PBC為直角三角形,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當(dāng)AP最大時(shí),OE的值最大.試題解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點(diǎn)P,使得△PBC為直角三角形,分兩種情況:①當(dāng)PB與⊙相切時(shí),△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=2,設(shè)OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2);②當(dāng)BC⊥PC時(shí),△PBC為直角三角形,過P4作P4H⊥y軸于H,則△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P1(﹣,﹣4);綜上所述:點(diǎn)P的坐標(biāo)為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1)如圖(1),連接AP,∵OB=OA,BE=EP,∴OE=AP,∴當(dāng)AP最大時(shí),OE的值最大,∵當(dāng)P在AC的延長(zhǎng)線上時(shí),AP的值最大,最大值=,∴OE的最大值為.故答案為.21、(1)200;(2)108°;(3)答案見解析;(4)600【解析】試題分析:(1)根據(jù)體育人數(shù)80人,占40%,可以求出總?cè)藬?shù).(2)根據(jù)圓心角=百分比×360°即可解決問題.(3)求出藝術(shù)類、其它類社團(tuán)人數(shù),即可畫出條形圖.(4)用樣本百分比估計(jì)總體百分比即可解決問題.試題解析:(1)80÷40%=200(人).

∴此次共調(diào)查200人.

(2)×360°=108°.∴文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù)為108°.

(3)補(bǔ)全如圖,(4)1500×40%=600(人).

∴估計(jì)該校喜歡體育類社團(tuán)的學(xué)生有600人.【點(diǎn)睛】此題主要考查了條形圖與統(tǒng)計(jì)表以及扇形圖的綜合應(yīng)用,由條形圖與扇形圖結(jié)合得出調(diào)查的總?cè)藬?shù)是解決問題的關(guān)鍵,學(xué)會(huì)用樣本估計(jì)總體的思想,屬于中考常考題型.22、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】

(1)由等腰直角三角形的性質(zhì)易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質(zhì)可得PM⊥PN;(2)(1)中的結(jié)論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當(dāng)BD的值最大時(shí),PM的值最大,△PMN的面積最大,推出當(dāng)B、C、D共線時(shí),BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長(zhǎng)AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設(shè)AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點(diǎn)P、M、N分別為AD、AB、DE的中點(diǎn),∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴當(dāng)BD的值最大時(shí),PM的值最大,△PMN的面積最大,∴當(dāng)B、C、D共線時(shí),BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面積的最大值=×3×3=.【點(diǎn)睛】本題考查的是幾何變換綜合題,熟知等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理的運(yùn)用,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會(huì)利用三角形的三邊關(guān)系解決最值問題,屬于中考?jí)狠S題.23、(1)證明見解析;(2);(3).【解析】

由余角的性質(zhì)可得,即可證∽;由相似三角形的性質(zhì)可得,由等腰三角形的性質(zhì)可得,即可求的值;由題意可證∽,可得,可求,由等腰三角形的性質(zhì)可得AE平分,可證,可得是等腰直角三角形,即可求AG的長(zhǎng).【詳解】證明:,又,又,∽∽,又,,如圖,延長(zhǎng)AD與BG的延長(zhǎng)線交于H點(diǎn),∽∴,由可知≌,,代入上式可得,∽,,,∴,,平分又平分,,是等腰直角三角形.∴.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解題關(guān)鍵是添加恰當(dāng)輔助線構(gòu)造相似三角形.24、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時(shí),當(dāng)點(diǎn)D運(yùn)動(dòng)到AB中點(diǎn)位置時(shí)四邊形CDBF為正方形.【解析】分析:(1)根據(jù)平移的性質(zhì)得到DF∥AC,所以由平行線的性質(zhì)、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數(shù)關(guān)系式;(2)不能為正方形,添加條件:AC=BC時(shí),點(diǎn)D運(yùn)動(dòng)到AB中點(diǎn)時(shí),四邊形CDBF為正方形;當(dāng)D運(yùn)動(dòng)到AB中點(diǎn)時(shí),四邊形CDBF是菱形,根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據(jù)有一內(nèi)角為直角的菱形是正方形來添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時(shí),當(dāng)點(diǎn)D運(yùn)動(dòng)到AB中點(diǎn)位置時(shí)四邊形CDBF為正方形.∵∠ACB=∠DFE=90°,D是AB的中點(diǎn)∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四邊形CDBF是菱形;∵AC=BC,D是AB的中點(diǎn).∴CD⊥AB即∠CDB=90°∵四邊形CDBF為菱形,∴四邊形CDBF是正方形.點(diǎn)睛:本題是幾何變換綜合題型,主要考查了平移變換的性質(zhì),勾股定理,正方形的判定,菱形的判定與性質(zhì)以及直角三角形斜邊上的中線.(2)難度稍大,根據(jù)三角形斜邊上的中線推知CD=BD=BF=BE是解題的關(guān)鍵.25、(1)①﹣3;②;(2);(3)【解析】

(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點(diǎn)與原點(diǎn)連線與軸夾角越大,可得直線與相切時(shí)理想值最大,與x中相切時(shí),理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時(shí),LQ取最小值和最大值,求出點(diǎn)橫坐標(biāo)即可;(3)根據(jù)題意將點(diǎn)轉(zhuǎn)化為直線,點(diǎn)理想值最大時(shí)點(diǎn)在上,分析圖形即可.【詳解】(1)①∵點(diǎn)在直線上,∴,∴點(diǎn)的“理想值”=-3,故答案為:﹣3.②當(dāng)點(diǎn)在與軸切點(diǎn)時(shí),點(diǎn)的“理想值”最小為0.當(dāng)點(diǎn)縱坐標(biāo)與橫坐標(biāo)比值最大時(shí),的“理想值”最大,此時(shí)直線與切于點(diǎn),設(shè)點(diǎn)Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點(diǎn)的“理想值”為,故答案為:.(2)設(shè)直線與軸、軸的交點(diǎn)分別為點(diǎn),點(diǎn),當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí),x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當(dāng)與軸相切時(shí),LQ=0,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最大值.作軸于點(diǎn),∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當(dāng)與直線相切時(shí),LQ=,相應(yīng)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論