版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湖北省武漢市鋼城第四中學(xué)數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.等差數(shù)列{}中,=2,=7,則=()A.10 B.20 C.16 D.122.在等差數(shù)列中,若前項(xiàng)的和,,則()A. B. C. D.3.在中,若,則的面積為().A.8 B.2 C. D.44.已知函數(shù)(其中為自然對數(shù)的底數(shù)),則的大致圖象為()A. B. C. D.5.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則6.甲、乙兩名運(yùn)動員分別進(jìn)行了5次射擊訓(xùn)練,成績?nèi)缦拢杭祝?,7,8,8,1;乙:8,9,9,9,1.若甲、乙兩名運(yùn)動員的平均成績分別用,表示,方差分別用,表示,則()A., B.,C., D.,7.的展開式中含的項(xiàng)的系數(shù)為()A.-1560 B.-600 C.600 D.15608.已知圓錐的高為3,底面半徑為,若該圓錐的頂點(diǎn)與底面的圓周都在同一個(gè)球面上,則這個(gè)球的體積等于()A.π B.πC.16π D.32π9.某校有高一學(xué)生人,高二學(xué)生人,高三學(xué)生人,現(xiàn)教育局督導(dǎo)組欲用分層抽樣的方法抽取名學(xué)生進(jìn)行問卷調(diào)查,則下列判斷正確的是()A.高一學(xué)生被抽到的可能性最大 B.高二學(xué)生被抽到的可能性最大C.高三學(xué)生被抽到的可能性最大 D.每位學(xué)生被抽到的可能性相等10.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作之一,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積(弦矢矢),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于6米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約為()A.12平方米 B.16平方米 C.20平方米 D.24平方米二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列中,其前n項(xiàng)和,則的通項(xiàng)公式為______________..12.平面四邊形中,,則=_______.13.已知與的夾角為,,,則________.14.設(shè),則的值是____.15.當(dāng)時(shí),的最大值為__________.16.已知三棱柱的側(cè)棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(I)求的最小正周期;(II)求在上的最大值與最小值.18.等差數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.19.已知等差數(shù)列的首項(xiàng)為,公差為,前n項(xiàng)和為,且滿足,.(1)證明;(2)若,,當(dāng)且僅當(dāng)時(shí),取得最小值,求首項(xiàng)的取值范圍.20.已知圓:.(1)過的直線與圓:交于,兩點(diǎn),若,求直線的方程;(2)過的直線與圓:交于,兩點(diǎn),直接寫出面積取值范圍;(3)已知,,圓上是否存在點(diǎn),使得,請說明理由.21.對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖:分組頻數(shù)頻率2440.120.05合計(jì)1(1)求出表中,及圖中的值;(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù);(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
根據(jù)等差數(shù)列的性質(zhì)可知第五項(xiàng)減去第三項(xiàng)等于公差的2倍,由=+5得到2d等于5,然后再根據(jù)等差數(shù)列的性質(zhì)得到第七項(xiàng)等于第五項(xiàng)加上公差的2倍,把的值和2d的值代入即可求出的值,即可知=,故選D.2、C【解析】試題分析:.考點(diǎn):等差數(shù)列的基本概念.3、C【解析】
由正弦定理結(jié)合已知,可以得到的關(guān)系,再根據(jù)余弦定理結(jié)合,可以求出的值,再利用三角形面積公式求出三角形的面積即可.【詳解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面積為,故本題選C.【點(diǎn)睛】本題考查了正弦定理、余弦定理、三角形面積公式,考查了數(shù)學(xué)運(yùn)算能力.4、D【解析】令,,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又令,所以有兩個(gè)零點(diǎn),因?yàn)?,,所以,且?dāng)時(shí),,,當(dāng)時(shí),,,當(dāng)時(shí),,,選項(xiàng)C滿足條件.故選C.點(diǎn)睛:本題考查函數(shù)的解析式和圖象的關(guān)系、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;已知函數(shù)的解析式識別函數(shù)圖象是高考常見題型,往往從定義域、奇偶性(對稱性)、單調(diào)性、最值及特殊點(diǎn)的符號進(jìn)行驗(yàn)證,逐一驗(yàn)證進(jìn)行排除.5、D【解析】
對于A,利用線面平行的判定可得A正確.對于B,利用線面垂直的性質(zhì)可得B正確.對于C,利用面面垂直的判定可得C正確.根據(jù)平面與平面的位置關(guān)系即可判斷D不正確.【詳解】對于A,根據(jù)平面外的一條直線與平面內(nèi)的一條直線平行,則這條直線平行于這個(gè)平面,可判定A正確.對于B,根據(jù)垂直于同一個(gè)平面的兩條直線平行,判定B正確.對于C,根據(jù)一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直,可判定C正確.對于D,若,則或相交,所以D不正確.故選:D【點(diǎn)睛】本題主要考查了線面平行和面面垂直的判定,同時(shí)考查了線面垂直的性質(zhì),屬于中檔題.6、D【解析】
分別計(jì)算出他們的平均數(shù)和方差,比較即得解.【詳解】由題意可得,,,.故,.故選D【點(diǎn)睛】本題主要考查平均數(shù)和方差的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.7、A【解析】的項(xiàng)可以由或的乘積得到,所以含的項(xiàng)的系數(shù)為,故選A.8、B【解析】
作軸截面,圓錐的軸截面是等腰三角形,外接球的截面是圓為球的大圓是的外接圓,由圖可得球的半徑與圓錐的關(guān)系.【詳解】如圖,作軸截面,圓錐的軸截面是等腰三角形,的外接圓是球的大圓,設(shè)該圓錐的外接球的半徑為R,依題意得,R2=(3-R)2+()2,解得R=2,所以所求球的體積V=πR3=π×23=π,故選B.【點(diǎn)睛】本題考查球的體積,關(guān)鍵是確定圓錐的外接球與圓錐之間的關(guān)系,即球半徑與圓錐的高和底面半徑之間的聯(lián)系,而這個(gè)聯(lián)系在其軸截面中正好體現(xiàn).9、D【解析】
根據(jù)分層抽樣是等可能的選出正確答案.【詳解】由于分層抽樣是等可能的,所以每位學(xué)生被抽到的可能性相等,故選D.【點(diǎn)睛】本小題主要考查隨機(jī)抽樣的公平性,考查分層抽樣的知識,屬于基礎(chǔ)題.10、C【解析】
在中,由題意OA=4,∠DAO=,即可求得OD,AD的值,根據(jù)題意可求矢和弦的值,即可利用公式計(jì)算求值得解.【詳解】如圖,由題意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面積=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故選:C【點(diǎn)睛】本題考查扇形的面積公式,考查數(shù)學(xué)閱讀能力和數(shù)學(xué)運(yùn)算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用遞推關(guān)系,當(dāng)時(shí),,當(dāng)時(shí),,即可求出.【詳解】由題知:當(dāng)時(shí),.當(dāng)時(shí),.檢驗(yàn)當(dāng)時(shí),,所以.故答案為:【點(diǎn)睛】本題主要考查根據(jù)數(shù)列的前項(xiàng)和求數(shù)列的通項(xiàng)公式,體現(xiàn)了分類討論的思想,屬于簡單題.12、【解析】
先求出,再求出,再利用余弦定理求出AD得解.【詳解】依題意得中,,故.在中,由正弦定理可知,,得.在中,因?yàn)?,故.則.在中,由余弦定理可知,,即.得.【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.13、3【解析】
將平方再利用數(shù)量積公式求解即可.【詳解】因?yàn)?故.化簡得.因?yàn)椋?故答案為:3【點(diǎn)睛】本題主要考查了模長與數(shù)量積的綜合運(yùn)用,經(jīng)常利用平方去處理.屬于基礎(chǔ)題.14、【解析】
根據(jù)二倍角公式得出,再根據(jù)誘導(dǎo)公式即可得解.【詳解】解:由題意知:故,即.故答案為.【點(diǎn)睛】本題考查了二倍角公式和誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.15、-3.【解析】
將函數(shù)的表達(dá)式改寫為:利用均值不等式得到答案.【詳解】當(dāng)時(shí),故答案為-3【點(diǎn)睛】本題考查了均值不等式,利用一正二定三相等將函數(shù)變形是解題的關(guān)鍵.16、【解析】試題分析:由題意得,不妨設(shè)棱長為,如圖,在底面內(nèi)的射影為的中心,故,由勾股定理得,過作平面,則為與底面所成角,且,作于中點(diǎn),所以,所以,所以與底面所成角的正弦值為.考點(diǎn):直線與平面所成的角.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(I);(II)3,.【解析】
(I)利用降次公式和輔助角公式化簡解析式,由此求得的最小正周期.(II)根據(jù)函數(shù)的解析式,以及的取值范圍,結(jié)合三角函數(shù)值域的求法,求得在區(qū)間上的最大值與最小值.【詳解】(I)的最小正周期.(Ⅱ),.【點(diǎn)睛】本小題主要考查降次公式和輔助角公式,考查三角函數(shù)在閉區(qū)間上的最值的求法,屬于中檔題.18、(1);(2).【解析】
(1)根據(jù)等差數(shù)列公式得到方程組,計(jì)算得到答案.(2)先求出,再利用裂項(xiàng)求和求得.【詳解】(1)等差數(shù)列中,,解得:(2)數(shù)列的前n項(xiàng)和.【點(diǎn)睛】本題考查了數(shù)列的通項(xiàng)公式,裂項(xiàng)求和,意在考查學(xué)生對于數(shù)列公式的靈活運(yùn)用及計(jì)算能力.19、(1)證明見解析;(2)【解析】
(1)根據(jù)等差數(shù)列的前n項(xiàng)和公式,變形可證明為等差數(shù)列.結(jié)合條件,,可得,進(jìn)而表示出.由為等差數(shù)列,表示出,化簡變形后結(jié)合不等式性質(zhì)即可證明.(2)將三角函數(shù)式分組,提公因式后結(jié)合同角三角函數(shù)關(guān)系式化簡.再由平方差公式及正弦的和角與差角公式合并.根據(jù)條件等式,結(jié)合等差數(shù)列性質(zhì),即可求得.由,即可確定.當(dāng)且僅當(dāng)時(shí),取得最小值,可得不等式組,即可得首項(xiàng)的取值范圍.【詳解】(1)證明:等差數(shù)列的前n項(xiàng)和為,則所以,,故為等差數(shù)列,因?yàn)?,所以,解得,因?yàn)?得故,從而.(2)而.由條件又由等差數(shù)列性質(zhì)知:所以,因?yàn)?所以,那么.等差數(shù)列,當(dāng)且僅當(dāng)時(shí),取得最小值.,所以.【點(diǎn)睛】本題考查了等差數(shù)列前n項(xiàng)和公式的應(yīng)用,等差數(shù)列通項(xiàng)公式定義及變形式應(yīng)用.三角函數(shù)式變形,正弦和角與差角公式的應(yīng)用,不等式組的解法,綜合性強(qiáng),屬于難題.20、(1)或;(2);(3)存在,理由見解析【解析】
求得圓的圓心和半徑.(1)設(shè)出直線的方程,利用弦長、勾股定理和點(diǎn)到直線距離列方程,解方程求得直線的斜率,進(jìn)而求得直線的方程.(2)利用三角形的面積公式列式,由此求得面積取值范圍.(3)求得三角形外接圓的方程,根據(jù)圓和圓的位置關(guān)系,判斷出點(diǎn)存在.【詳解】圓心為,半徑為.(1)直線有斜率,設(shè):,圓心到直線的距離為,∵,則由,得,直線的方程為或(2)依題意可知,三角形的面積為,由于,所以,所以.(3)設(shè)三角形的外接圓圓心為(),半徑為,由正弦定理得,,所以,所以圓的圓心為,所以圓的方程為,圓與圓滿足圓心距:,∴圓與圓相交于兩點(diǎn),圓上存在兩個(gè)這樣的點(diǎn),滿足題意.【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查圓和圓的位置關(guān)系,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21、(1);;;(2)60人.(3)【解析】
(1)根據(jù)頻率,頻數(shù)和樣本容量之間的關(guān)系即頻率等于頻數(shù)除以樣本容量,寫出算式,求出式子中的字母的值;(2)該校高三學(xué)生有240人,分組內(nèi)的頻率是0.25,估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為60人;(3)設(shè)在區(qū)間內(nèi)的人為,,,,在區(qū)間內(nèi)的人為,,寫出任選2人的所有基本事件,利用對立事件求得答案.【詳解】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024學(xué)校實(shí)驗(yàn)室設(shè)備更新及維修服務(wù)合同3篇
- 2024店鋪轉(zhuǎn)讓協(xié)議書
- 2024模具智能制造技術(shù)研發(fā)合同
- 2024標(biāo)準(zhǔn)版兩居室房車短期租賃合同版
- 2024服裝工裝定制合同
- 2024青島運(yùn)動會官方用車租賃服務(wù)協(xié)議3篇
- 2024年行車設(shè)備安裝與維護(hù)合同3篇
- 2024年版城市供水項(xiàng)目特許經(jīng)營權(quán)協(xié)議
- 2024運(yùn)營總監(jiān)國際業(yè)務(wù)拓展與跨國合作合同3篇
- 2025年度網(wǎng)絡(luò)安全技術(shù)股權(quán)合作與轉(zhuǎn)讓合同3篇
- 制造車間用洗地機(jī)安全操作規(guī)程
- 陜西2020-2024年中考英語五年真題匯編學(xué)生版-專題09 閱讀七選五
- 多源數(shù)據(jù)融合平臺建設(shè)方案
- 2023-2024學(xué)年上海市普陀區(qū)三年級(上)期末數(shù)學(xué)試卷
- 居家養(yǎng)老上門服務(wù)投標(biāo)文件
- 浙江省寧波市鄞州區(qū)2024年七年級上學(xué)期期末數(shù)學(xué)試題【含答案】
- 助產(chǎn)專業(yè)的職業(yè)生涯規(guī)劃
- 骨質(zhì)疏松護(hù)理
- 浙江省杭州市錢塘區(qū)2023-2024學(xué)年四年級上學(xué)期語文期末試卷
- 《聞泰科技并購安世半導(dǎo)體的風(fēng)險(xiǎn)應(yīng)對案例探析》8200字(論文)
- 小班班本課程《吃飯這件小事》
評論
0/150
提交評論