版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022學年廣東省中學山市城東教共進聯(lián)盟中考三模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-12.若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()A.有最大值 B.有最大值 C.有最小值 D.有最小值3.四根長度分別為3,4,6,x(x為正整數(shù))的木棒,從中任取三根.首尾順次相接都能組成一個三角形,則().A.組成的三角形中周長最小為9 B.組成的三角形中周長最小為10C.組成的三角形中周長最大為19 D.組成的三角形中周長最大為164.小軍旅行箱的密碼是一個六位數(shù),由于他忘記了密碼的末位數(shù)字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.5.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點,則k的值為()A.6 B.8 C.10 D.126.在下列四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C.. D.7.如圖所示的工件,其俯視圖是()A. B. C. D.8.已知二次函數(shù)y=3(x﹣1)2+k的圖象上有三點A(,y1),B(2,y2),C(﹣,y3),則y1、y2、y3的大小關(guān)系為()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y19.如圖,已知?ABCD中,E是邊AD的中點,BE交對角線AC于點F,那么S△AFE:S四邊形FCDE為()A.1:3 B.1:4 C.1:5 D.1:610.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數(shù)為()A.50° B.40° C.30° D.25°11.下列運算正確的是()A.2a+3a=5a2B.(a3)3=a9C.a(chǎn)2?a4=a8D.a(chǎn)6÷a3=a212.下列各數(shù):1.414,,﹣,0,其中是無理數(shù)的為()A.1.414 B. C.﹣ D.0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.14.將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設(shè)點A表示的數(shù)為x﹣3,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,若將△ABC向右滾動,則x的值等于_____,數(shù)字2012對應的點將與△ABC的頂點_____重合.15.如圖,△ABC中,過重心G的直線平行于BC,且交邊AB于點D,交邊AC于點E,如果設(shè)=,=,用,表示,那么=___.16.一個不透明的袋子中裝有5個球,其中3個紅球、2個黑球,這些球除顏色外無其它差別,現(xiàn)從袋子中隨機摸出一個球,則它是黑球的概率是_____.17.二次根式在實數(shù)范圍內(nèi)有意義,x的取值范圍是_____.18.從一副54張的撲克牌中隨機抽取一張,它是K的概率為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).求反比例函數(shù)的解析式;觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.20.(6分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.21.(6分)填空并解答:某單位開設(shè)了一個窗口辦理業(yè)務,并按顧客“先到達,先辦理”的方式服務,該窗口每2分鐘服務一位顧客.已知早上8:00上班窗口開始工作時,已經(jīng)有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達,且以后每5分鐘就有一位“新顧客”到達.該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設(shè)原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a(chǎn)1a2a3a4a5a6c1c2c3c4…到達窗口時刻000000161116…服務開始時刻024681012141618…每人服務時長2222222222…服務結(jié)束時刻2468101214161820…根據(jù)上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數(shù)),則當a最小取什么值時,窗口排隊現(xiàn)象不可能消失.分析:第n個“新顧客”到達窗口時刻為,第(n﹣1)個“新顧客”服務結(jié)束的時刻為.22.(8分)在數(shù)學實踐活動課上,老師帶領(lǐng)同學們到附近的濕地公園測量園內(nèi)雕塑的高度.用測角儀在A處測得雕塑頂端點C′的仰角為30°,再往雕塑方向前進4米至B處,測得仰角為45°.問:該雕塑有多高?(測角儀高度忽略不計,結(jié)果不取近似值.)23.(8分)某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360件,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件.(1)該車間應安排幾天加工童裝,幾天加工成人裝,才能如期完成任務;(2)若加工童裝一件可獲利80元,加工成人裝一件可獲利120元,那么該車間加工完這批服裝后,共可獲利多少元.24.(10分)為了豐富校園文化,促進學生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學開展“書法、武術(shù)、黃梅戲進校園”活動.今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個等級,該校部分學生參加了學校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題.(1)求該校參加本次“黃梅戲”演唱比賽的學生人數(shù);(2)求扇形統(tǒng)計圖B等級所對應扇形的圓心角度數(shù);(3)已知A等級的4名學生中有1名男生,3名女生,現(xiàn)從中任意選取2名學生作為全校訓練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.25.(10分)如圖,在中,,是角平分線,平分交于點,經(jīng)過兩點的交于點,交于點,恰為的直徑.求證:與相切;當時,求的半徑.26.(12分)中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:頻數(shù)頻率分布表成績x(分)頻數(shù)(人)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根據(jù)所給信息,解答下列問題:(1)m=,n=;(2)補全頻數(shù)分布直方圖;(3)這200名學生成績的中位數(shù)會落在分數(shù)段;(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學生中成績是“優(yōu)”等的約有多少人?27.(12分)如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.求證:△ADE∽△ABC;若AD=3,AB=5,求的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個條件需同時具備,缺一不可.據(jù)此可以解答本題.【詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【點睛】此題考查的是對分式的值為2的條件的理解,該類型的題易忽略分母不為2這個條件.2、B【解析】
解:∵一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數(shù)有最大值,∴最大值為,故選B.3、D【解析】
首先寫出所有的組合情況,再進一步根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個三角形,可得3<x<7,即x=4或5或1.①當三邊為3、4、1時,其周長為3+4+1=13;②當x=4時,周長最小為3+4+4=11,周長最大為4+1+4=14;③當x=5時,周長最小為3+4+5=12,周長最大為4+1+5=15;④若x=1時,周長最小為3+4+1=13,周長最大為4+1+1=11;綜上所述,三角形周長最小為11,最大為11,故選:D.【點睛】本題考查的是三角形三邊關(guān)系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關(guān)鍵.4、A【解析】∵密碼的末位數(shù)字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當他忘記了末位數(shù)字時,要一次能打開的概率是.故選A.5、B【解析】
根據(jù)勾股定理得到OA==5,根據(jù)菱形的性質(zhì)得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結(jié)論.【詳解】∵點A的坐標為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,菱形的性質(zhì),勾股定理,正確的識別圖形是解題的關(guān)鍵.6、B【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;中心對稱圖形的定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心,因此:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,不是中心對稱圖形,不符合題意.故選B.考點:軸對稱圖形和中心對稱圖形7、B【解析】試題分析:從上邊看是一個同心圓,外圓是實線,內(nèi)圓是虛線,故選B.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實線,看不見部分的輪廓線要畫成虛線.8、D【解析】試題分析:根據(jù)二次函數(shù)的解析式y(tǒng)=3(x-1)2+k,可知函數(shù)的開口向上,對稱軸為x=1,根據(jù)函數(shù)圖像的對稱性,可得這三點的函數(shù)值的大小為y3>y2>y1.故選D點睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解題時先根據(jù)頂點式求出開口方向,和對稱軸,然后根據(jù)函數(shù)的增減性比較即可,這是中考??碱},難度有點偏大,注意結(jié)合圖形判斷驗證.9、C【解析】
根據(jù)AE∥BC,E為AD中點,找到AF與FC的比,則可知△AEF面積與△FCE面積的比,同時因為△DEC面積=△AEC面積,則可知四邊形FCDE面積與△AEF面積之間的關(guān)系.【詳解】解:連接CE,∵AE∥BC,E為AD中點,
∴.
∴△FEC面積是△AEF面積的2倍.
設(shè)△AEF面積為x,則△AEC面積為3x,
∵E為AD中點,
∴△DEC面積=△AEC面積=3x.
∴四邊形FCDE面積為1x,
所以S△AFE:S四邊形FCDE為1:1.
故選:C.【點睛】本題考查相似三角形的判定和性質(zhì)、平行四邊形的性質(zhì),解題關(guān)鍵是通過線段的比得到三角形面積的關(guān)系.10、A【解析】
由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質(zhì).利用兩直線平行,同位角相等是解此題的關(guān)鍵.11、B【解析】
直接利用同底數(shù)冪的乘除運算法則以及冪的乘方運算法則、合并同類項法則分別化簡得出答案.【詳解】A、2a+3a=5a,故此選項錯誤;B、(a3)3=a9,故此選項正確;C、a2?a4=a6,故此選項錯誤;D、a6÷a3=a3,故此選項錯誤.故選:B.【點睛】此題主要考查了同底數(shù)冪的乘除運算以及合并同類項和冪的乘方運算,正確掌握運算法則是解題關(guān)鍵.12、B【解析】試題分析:根據(jù)無理數(shù)的定義可得是無理數(shù).故答案選B.考點:無理數(shù)的定義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題解析:所以故答案為14、﹣1C.【解析】∵將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設(shè)點A表示的數(shù)為x﹣1,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的數(shù)為:x﹣1=﹣1﹣1=﹣6,點B表示的數(shù)為:2x+1=2×(﹣1)+1=﹣5,即等邊三角形ABC邊長為1,數(shù)字2012對應的點與﹣4的距離為:2012+4=2016,∵2016÷1=672,C從出發(fā)到2012點滾動672周,∴數(shù)字2012對應的點將與△ABC的頂點C重合.故答案為﹣1,C.點睛:此題主要考查了等邊三角形的性質(zhì),實數(shù)與數(shù)軸,一元一次方程等知識,本題將數(shù)與式的考查有機地融入“圖形與幾何”中,滲透“數(shù)形結(jié)合思想”、“方程思想”等,也是一道較優(yōu)秀的操作活動型問題.15、【解析】
連接AG,延長AG交BC于F.首先證明DG=GE,再利用三角形法則求出即可解決問題.【詳解】連接AG,延長AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案為.【點睛】本題考查三角形的重心,平行線的性質(zhì),平面向量等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.16、【解析】
用黑球的個數(shù)除以總球的個數(shù)即可得出黑球的概率.【詳解】解:∵袋子中共有5個球,有2個黑球,∴從袋子中隨機摸出一個球,它是黑球的概率為;故答案為.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.17、x≤1【解析】
根據(jù)二次根式有意義的條件列出不等式,解不等式即可.【詳解】解:由題意得,1﹣x≥0,解得,x≤1,故答案為x≤1.【點睛】本題考查的是二次根式有意義的條件,掌握二次根式中的被開方數(shù)必須是非負數(shù)是解題的關(guān)鍵.18、【解析】
根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】一副撲克牌共有54張,其中只有4張K,∴從一副撲克牌中隨機抽出一張牌,得到K的概率是=,故答案為:.【點睛】此題考查了概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)(2)﹣1<x<0或x>1.(3)四邊形OABC是平行四邊形;理由見解析.【解析】
(1)設(shè)反比例函數(shù)的解析式為(k>0),然后根據(jù)條件求出A點坐標,再求出k的值,進而求出反比例函數(shù)的解析式.(2)直接由圖象得出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;(3)首先求出OA的長度,結(jié)合題意CB∥OA且CB=,判斷出四邊形OABC是平行四邊形,再證明OA=OC【詳解】解:(1)設(shè)反比例函數(shù)的解析式為(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵點A在上,∴,解得k=2.,∴反比例函數(shù)的解析式為.(2)觀察圖象可知正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍為﹣1<x<0或x>1.(3)四邊形OABC是菱形.證明如下:∵A(﹣1,﹣2),∴.由題意知:CB∥OA且CB=,∴CB=OA.∴四邊形OABC是平行四邊形.∵C(2,n)在上,∴.∴C(2,1).∴.∴OC=OA.∴平行四邊形OABC是菱形.20、證明見解析.【解析】
根據(jù)在同圓中等弦對的弧相等,AB、CD是⊙O的直徑,則,由FD=EB,得,,由等量減去等量仍是等量得:,即,由等弧對的圓周角相等,得∠D=∠B.【詳解】解:方法(一)證明:∵AB、CD是⊙O的直徑,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)證明:如圖,連接CF,AE.∵AB、CD是⊙O的直徑,∴∠F=∠E=90°(直徑所對的圓周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【點睛】本題利用了在同圓中等弦對的弧相等,等弧對的弦,圓周角相等,等量減去等量仍是等量求解.21、(1)5;(2)5n﹣4,na+6a.【解析】
(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結(jié)束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,則第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,第n﹣1個“新顧客”服務結(jié)束的時間為(5+n)a+a=na+6a.【詳解】(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結(jié)束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;故答案為:5;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,∴第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,∴第n個“新顧客”服務開始的時間為(6+n)a,∴第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,∵每a分鐘辦理一個客戶,∴第n﹣1個“新顧客”服務結(jié)束的時間為(5+n)a+a=na+6a,故答案為:5n﹣4,na+6a.【點睛】本題考查了列代數(shù)式,用代數(shù)式表示數(shù)的規(guī)律,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,尋找規(guī)律,列出代數(shù)式.22、該雕塑的高度為(2+2)米.【解析】
過點C作CD⊥AB,設(shè)CD=x,由∠CBD=45°知BD=CD=x米,根據(jù)tanA=列出關(guān)于x的方程,解之可得.【詳解】解:如圖,過點C作CD⊥AB,交AB延長線于點D,設(shè)CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即,解得:x=2+2,答:該雕塑的高度為(2+2)米.【點睛】本題主要考查解直角三角形的應用-仰角俯角問題,解題的關(guān)鍵是根據(jù)題意構(gòu)建直角三角形,并熟練掌握三角函數(shù)的應用.23、(1)該車間應安排4天加工童裝,6天加工成人裝;(2)36000元.【解析】
(1)利用某車間計劃用10天加工一批出口童裝和成人裝共360件,分別得出方程組成方程組求出即可;(2)利用(1)中所求,分別得出兩種服裝獲利即可得出答案.【詳解】解:(1)設(shè)該車間應安排x天加工童裝,y天加工成人裝,由題意得:,解得:,答:該車間應安排4天加工童裝,6天加工成人裝;(2)∵45×4=180,30×6=180,∴180×80+180×120=180×(80+120)=36000(元),答:該車間加工完這批服裝后,共可獲利36000元.【點睛】本題考查二元一次方程組的應用.24、(1)50;(2)115.2°;(3)12【解析】(1)先求出參加本次比賽的學生人數(shù);(2)由(1)求出的學生人數(shù),即可求出B等級所對應扇形的圓心角度數(shù);(3)首先根據(jù)題意列表或畫出樹狀圖,然后由求得所有等可能的結(jié)果,再利用概率公式即可求得答案.解:(1)參加本次比賽的學生有:4÷8%=50(人)(2)B等級的學生共有:50-4-20-8-2=16(人).∴所占的百分比為:16÷50=32%∴B等級所對應扇形的圓心角度數(shù)為:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能的結(jié)果,選中1名男生和1名女生結(jié)果的有6種.∴P(選中1名男生和1名女生)=6“點睛”本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.通過扇形統(tǒng)計圖求出扇形的圓心角度數(shù),應用數(shù)形結(jié)合的思想是解決此類題目的關(guān)鍵.25、(1)證明見解析;(2).【解析】
(1)連接OM,證明OM∥BE,再結(jié)合等腰三角形的性質(zhì)說明AE⊥BE,進而證明OM⊥AE;(2)結(jié)合已知求出AB,再證明△AOM∽△ABE,利用相似三角形的性質(zhì)計算.【詳解】(1)連接OM,則OM=OB,∴∠1=∠2,∵BM平分∠ABC,∴∠1=∠3,∴∠2=∠3,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∵點M在圓O上,∴AE與⊙O相切;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年貨物運輸合同規(guī)定運輸方式與責任
- 2025年度歷史建筑保護拆墻工程合作協(xié)議4篇
- 2024豬場租賃承包合同
- 2024節(jié)能減排協(xié)議書
- 《中樞性高熱患者的護理與治療》課件
- 2025年度新媒體運營與公關(guān)合作服務合同范本4篇
- 2024年05月云南廣發(fā)銀行昆明分行招考筆試歷年參考題庫附帶答案詳解
- 2025年度大數(shù)據(jù)分析服務合同樣本8篇
- 2025變頻器代理商銷售合同:市場拓展與品牌推廣合作3篇
- 二零二五年度高端酒店集團食材供應與服務合同3篇
- 常見老年慢性病防治與護理課件整理
- 履約情況證明(共6篇)
- 云南省迪慶藏族自治州各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 設(shè)備機房出入登記表
- 六年級語文-文言文閱讀訓練題50篇-含答案
- 醫(yī)用冰箱溫度登記表
- 零售學(第二版)第01章零售導論
- 大學植物生理學經(jīng)典05植物光合作用
- 口袋妖怪白金光圖文攻略2周目
- 光伏發(fā)電站集中監(jiān)控系統(tǒng)通信及數(shù)據(jù)標準
- 三年級下冊生字組詞(帶拼音)
評論
0/150
提交評論