2024屆福建省三明一中高一下數(shù)學期末綜合測試試題含解析_第1頁
2024屆福建省三明一中高一下數(shù)學期末綜合測試試題含解析_第2頁
2024屆福建省三明一中高一下數(shù)學期末綜合測試試題含解析_第3頁
2024屆福建省三明一中高一下數(shù)學期末綜合測試試題含解析_第4頁
2024屆福建省三明一中高一下數(shù)學期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆福建省三明一中高一下數(shù)學期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最大值為A.4 B.5 C.6 D.72.已知A={第一象限角},B={銳角},C={小于90°的角},那么A、B、C關(guān)系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C3.如圖所示,在正四棱錐中,分別是,,的中點,動點在線段上運動時,下列結(jié)論不恒成立的是().A.與異面 B.面 C. D.4.已知,則()A.-3 B. C. D.35.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a﹣b=ccosB﹣ccosA,則△ABC的形狀為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形6.如圖所示是的圖象的一段,它的一個解析式為()A. B.C. D.7.設函數(shù)的最大值為,最小值為,則與滿足的關(guān)系是()A. B.C. D.8.已知等比數(shù)列中,各項都是正數(shù),且成等差數(shù)列,則等于()A. B. C. D.9.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.10.已知圓,圓,分別為圓上的點,為軸上的動點,則的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在直角坐標系xOy中,一單位圓的圓心的初始位置在,此時圓上一點P的位置在,圓在x軸上沿正向滾動.當圓滾動到圓心位于時,的坐標為________.12.在中,若,則等于__________.13.在《九章算術(shù)·商功》中將四個面均為直角三角形的三棱錐稱為鱉臑(biēnào),在如下圖所示的鱉臑中,,,,則的直角頂點為______.14.中國古代數(shù)學著作《算法統(tǒng)宗》有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”其大意為:“有一個人要走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后達到目的地.”則該人最后一天走的路程為__________里.15.已知,,若,則____16.已知,且,則_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設是兩個相互垂直的單位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.18.已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.(1)求k的取值范圍;(2)若=12,其中O為坐標原點,求|MN|.19.據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.(1)試計算出圖案中球與圓柱的體積比;(2)假設球半徑.試計算出圖案中圓錐的體積和表面積.20.如圖所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)證明:⊥平面;(2)若,求點到平面的距離.21.已知函數(shù).(1)求的最小正周期;(2)若,求當時自變量的取值集合.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:因為,而,所以當時,取得最大值5,選B.【考點】正弦函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)【名師點睛】求解本題易出現(xiàn)的錯誤是認為當時,函數(shù)取得最大值.2、B【解析】

由集合A,B,C,求出B與C的并集,判斷A與C的包含關(guān)系,以及A,B,C三者之間的關(guān)系即可.【詳解】由題BA,∵A={第一象限角},B={銳角},C={小于90°的角},∴B∪C={小于90°的角}=C,即BC,則B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故選:B.【點睛】此題考查了集合間的基本關(guān)系及運算,熟練掌握象限角,銳角,以及小于90°的角表示的意義是解本題的關(guān)鍵,是易錯題3、D【解析】如圖所示,連接AC、BD相交于點O,連接EM,EN.(1)由正四棱錐S?ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分別是BC,CD,SC的中點,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正確.(2)由異面直線的定義可知:EP與SD是異面直線,故A正確;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正確.(4)當P與M重合時,有∥,其他情況都是異面直線即D不正確.故選D點睛:本題抓住正四棱錐的特征,頂點在底面的投影為底面正方形的中心,即SO⊥底面ABCD,EP為動直線,所以要證EP∥面,可先證EP所在的平面平行于面SBD,要證⊥可先證AC垂直于EP所在的平面,所以化動為靜的處理思想在立體中常用.4、C【解析】

由同角三角函數(shù)關(guān)系得到余弦、正切,再由兩角差的正切公式得到結(jié)果.【詳解】已知,則,,則故答案為C.【點睛】這個題目考查了三角函數(shù)的化簡求值,1.利用sin2α+cos2α=1可以實現(xiàn)角α的正弦、余弦的互化,利用=tanα可以實現(xiàn)角α的弦切互化;2.注意公式逆用及變形應用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.5、D【解析】

用正弦定理化邊為角,再由誘導公式和兩角和的正弦公式化簡變形可得.【詳解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故選:D.【點睛】本題考查正弦定理,考查三角形形狀的判斷.解題關(guān)鍵是誘導公式的應用.6、D【解析】

根據(jù)函數(shù)的圖象,得出振幅與周期,從而求出與的值.【詳解】根據(jù)函數(shù)的圖象知,振幅,周期,即,解得;所以時,,;解得,,所以函數(shù)的一個解析式為.故答案為D.【點睛】本題考查了函數(shù)的圖象與性質(zhì)的應用問題,考查三角函數(shù)的解析式的求法,屬于基礎題.7、B【解析】

將函數(shù)化為一個常數(shù)函數(shù)與一個奇函數(shù)的和,再利用奇函數(shù)的對稱性可得答案.【詳解】因為,令,則,所以為奇函數(shù),所以,所以,故選:B【點睛】本題考查了兩角差的余弦公式,考查了奇函數(shù)的對稱性的應用,屬于中檔題.8、C【解析】

由條件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求運算求得結(jié)果.【詳解】∵等比數(shù)列{an}中,各項都是正數(shù),且a1,a3,2a2成等差數(shù)列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故選:C.【點睛】本題主要考查等差中項的性質(zhì),等比數(shù)列的通項公式,考查了整體化的運算技巧,屬于基礎題.9、B【解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內(nèi)公切線的斜率,利用數(shù)形結(jié)合可得結(jié)果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內(nèi)公切線為與,由圖可知,設兩圓內(nèi)公切線方程為,則,圓心在內(nèi)公切線兩側(cè),,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關(guān)系以及數(shù)形結(jié)合思想的應用,屬于綜合題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關(guān)鍵是運用這種方法的關(guān)鍵是正確作出曲線圖象,充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡,并迎刃而解.10、D【解析】

求出圓關(guān)于軸的對稱圓的圓心坐標A,以及半徑,然后求解圓A與圓的圓心距減去兩個圓的半徑和,即可求得的最小值,得到答案.【詳解】如圖所示,圓關(guān)于軸的對稱圓的圓心坐標,半徑為1,圓的圓心坐標為,,半徑為3,由圖象可知,當三點共線時,取得最小值,且的最小值為圓與圓的圓心距減去兩個圓的半徑之和,即,故選D.【點睛】本題主要考查了圓的對稱圓的方程的求解,以及兩個圓的位置關(guān)系的應用,其中解答中合理利用兩個圓的位置關(guān)系是解答本題的關(guān)鍵,著重考查了數(shù)形結(jié)合法,以及推理與運算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設滾動后圓的圓心為C,切點為A,連接CP.過C作與x軸正方向平行的射線,交圓C于B(2,1),設∠BCP=θ,則根據(jù)圓的參數(shù)方程,得P的坐標為(1+cosθ,1+sinθ),再根據(jù)圓的圓心從(0,1)滾動到(1,1),算出,結(jié)合三角函數(shù)的誘導公式,化簡可得P的坐標為,即為向量的坐標.【詳解】設滾動后的圓的圓心為C,切點為,連接CP,過C作與x軸正方向平行的射線,交圓C于,設,∵C的方程為,∴根據(jù)圓的參數(shù)方程,得P的坐標為,∵單位圓的圓心的初始位置在,圓滾動到圓心位于,,可得,可得,,代入上面所得的式子,得到P的坐標為,所以的坐標是.故答案為:.【點睛】本題考查圓的參數(shù)方程,平面向量坐標表示的應用,解題的關(guān)鍵是根據(jù)數(shù)形結(jié)合找到變量的角度,屬于中等題.12、;【解析】

由條件利用三角形內(nèi)角和公式求得,再利用正弦定理即可求解.【詳解】在中,,,,即,,故答案為:【點睛】本題考查了正弦定理解三角形,需熟記定理的內(nèi)容,屬于基礎題.13、【解析】

根據(jù),可得平面,進而可得,再由,證明平面,即可得出,是的直角頂點.【詳解】在三棱錐中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角頂點為.故答案為:.【點睛】本題考查了直線與直線以及直線與平面垂直的應用問題,屬于基礎題.14、3【解析】分析:每天走的路形成等比數(shù)列{an},q=,S3=1.利用求和公式即可得出.詳解:每天走的路形成等比數(shù)列{an},q=,S3=1.∴S3=1=,解得a1=2.∴該人最后一天走的路程=a1q5==3.故答案為:3.點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于基礎題.15、【解析】

由,,得的坐標,根據(jù)得,由向量數(shù)量積的坐標表示即可得結(jié)果.【詳解】∵,,∴又∵,∴,即,所以,解得,故答案為.【點睛】本題主要考查了向量的坐標運算,兩向量垂直與數(shù)量積的關(guān)系,屬于基礎題.16、【解析】

首先根據(jù)已知條件求得的值,平方后利用同角三角函數(shù)的基本關(guān)系式求得的值.【詳解】由得,兩邊平方并化簡得,由于,所以.而,由于,所以【點睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ),則存在唯一的使,解得所求參數(shù)的值;(Ⅱ)若,則,解得所求參數(shù)的值.【詳解】解:(Ⅰ)若,則存在唯一的,使,,當時,;(Ⅱ)若,則,因為是兩個相互垂直的單位向量,當時,.【點睛】本題考查兩個向量平行、垂直的性質(zhì),兩個向量的數(shù)量積公式的應用.18、(3);(3)3.【解析】試題分析:(3)由題意可得,直線l的斜率存在,用點斜式求得直線l的方程,根據(jù)圓心到直線的距離等于半徑求得k的值,可得滿足條件的k的范圍.(3)由題意可得,經(jīng)過點M、N、A的直線方程為y=kx+3,根據(jù)直線和圓相交的弦長公式進行求解試題解析:(3)由題意可得,直線l的斜率存在,設過點A(2,3)的直線方程:y=kx+3,即:kx-y+3=2.由已知可得圓C的圓心C的坐標(3,3),半徑R=3.故由,解得:.故當,過點A(2,3)的直線與圓C:相交于M,N兩點.(3)設M;N,由題意可得,經(jīng)過點M、N、A的直線方程為y=kx+3,代入圓C的方程,可得,∴,∴,由,解得k=3,故直線l的方程為y=x+3,即x-y+3=2.圓心C在直線l上,MN長即為圓的直徑.所以|MN|=3考點:直線與圓的位置關(guān)系;平面向量數(shù)量積的運算19、(1);(2)圓錐體積,表面積【解析】

(1)由球的半徑可知圓柱底面半徑和高,代入球和圓柱的體積公式求得體積,作比得到結(jié)果;(2)由球的半徑可得圓錐底面半徑和高,從而可求解出圓錐母線長,代入圓錐體積和表面積公式可求得結(jié)果.【詳解】(1)設球的半徑為,則圓柱底面半徑為,高為球的體積;圓柱的體積球與圓柱的體積比為:(2)由題意可知:圓錐底面半徑為,高為圓錐的母線長:圓錐體積:圓錐表面積:【點睛】本題考查空間幾何體的表面積和體積求解問題,考查學生對于體積和表面積公式的掌握,屬于基礎題.20、(1)見解析(2)【解析】

(1)通過⊥,⊥來證明;(2)根據(jù)等體積法求解.【詳解】(1)證明:∵⊥平面,平面,∴⊥.又⊥,,平面,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論