![四川省井研中學2023-2024學年高一下數(shù)學期末統(tǒng)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view3/M01/33/1D/wKhkFmZSuaKAZubvAAJAMLAftps560.jpg)
![四川省井研中學2023-2024學年高一下數(shù)學期末統(tǒng)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view3/M01/33/1D/wKhkFmZSuaKAZubvAAJAMLAftps5602.jpg)
![四川省井研中學2023-2024學年高一下數(shù)學期末統(tǒng)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view3/M01/33/1D/wKhkFmZSuaKAZubvAAJAMLAftps5603.jpg)
![四川省井研中學2023-2024學年高一下數(shù)學期末統(tǒng)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view3/M01/33/1D/wKhkFmZSuaKAZubvAAJAMLAftps5604.jpg)
![四川省井研中學2023-2024學年高一下數(shù)學期末統(tǒng)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view3/M01/33/1D/wKhkFmZSuaKAZubvAAJAMLAftps5605.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省井研中學2023-2024學年高一下數(shù)學期末統(tǒng)考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知平面向量與的夾角為,且,則()A. B. C. D.2.已知,則=()A. B. C. D.3.設甲、乙兩地的距離為a(a>0),小王騎自行車以勻速從甲地到乙地用了20分鐘,在乙地休息10分鐘后,他又以勻速從乙地返回到甲地用了30分鐘,則小王從出發(fā)到返回原地所經(jīng)過的路程y和其所用的時間x的函數(shù)圖象為()A. B.C. D.4.設,表示兩條直線,,表示兩個平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.設,,,則的最小值為()A.2 B.4 C. D.6.函數(shù)(其中,)的部分圖象如圖所示、將函數(shù)的圖象向左平移個單位長度,得到的圖象,則下列說法正確的是()A.函數(shù)為奇函數(shù)B.函數(shù)的單調(diào)遞增區(qū)間為C.函數(shù)為偶函數(shù)D.函數(shù)的圖象的對稱軸為直線7.在某種新型材料的研制中,實驗人員獲得了下列一組實驗數(shù)據(jù):現(xiàn)準備用下列四個函數(shù)中的一個近似地表示這些數(shù)據(jù)的規(guī)律,其中最接近的一個是()345.156.1264.04187.51218.01A. B. C. D.8.若,則()A.-4 B.3 C.4 D.-39.下列條件不能確定一個平面的是()A.兩條相交直線 B.兩條平行直線 C.直線與直線外一點 D.共線的三點10.設等差數(shù)列的前n項和為,首項,公差,,則最大時,n的值為()A.11 B.10 C.9 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列,,,,則______.12.兩圓交于點和,兩圓的圓心都在直線上,則____________;13.設滿足約束條件若目標函數(shù)的最大值為,則的最小值為_________.14.設,過定點A的動直線和過定點B的動直線交于點,則的最大值是.15.若點為圓的弦的中點,則弦所在的直線的方程為___________.16.如圖所示的莖葉圖記錄了甲、乙兩組各五名學生在一次英語聽力測試中的成績(單位:分),已知甲組數(shù)據(jù)的中位數(shù)為17,則x的值為_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當時,,求的值;(2)令,若對任意都有恒成立,求的最大值.18.已知函數(shù),其中.解關于x的不等式;求a的取值范圍,使在區(qū)間上是單調(diào)減函數(shù).19.(1分)設數(shù)列{an}是公比為正數(shù)的等比數(shù)列,a1=2,a3﹣a2=1.(1)求數(shù)列{an}的通項公式;(2)設數(shù)列{bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn.20.已知數(shù)列滿足:.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項;(2)求數(shù)列的前項和.21.設全集為實數(shù)集,,,.(1)若,求實數(shù)的取值范圍;(2)若,且,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)平面向量數(shù)量積的運算法則,將平方運算可得結果.【詳解】∵,∴,∴cos=4,∴,故選A.【點睛】本題考查了利用平面向量的數(shù)量積求模的應用問題,考查了數(shù)量積與模之間的轉(zhuǎn)化,是基礎題目.2、C【解析】由得:,所以,故選D.3、D【解析】試題分析:根據(jù)題意,甲、乙兩地的距離為a(a>0),小王騎自行車以勻速從甲地到乙地用了20min,在乙地休息10min后,他又以勻速從乙地返回到甲地用了30min,那么可知先是勻速運動,圖像為直線,然后再休息,路程不變,那么可知時間持續(xù)10min,那么最后還是同樣的勻速運動,直線的斜率不變可知選D.考點:函數(shù)圖像點評:主要是考查了路程與時間的函數(shù)圖像的運用,屬于基礎題.4、D【解析】
對選項進行一一判斷,選項D為面面垂直判定定理.【詳解】對A,與可能異面,故A錯;對B,可能在平面內(nèi);對C,與平面可能平行,故C錯;對D,面面垂直判定定理,故選D.【點睛】本題考查空間中線、面位置關系,判斷一個命題為假命題,只要能舉出反例即可.5、D【解析】
利用基本不等式可得,再結合代入即可得出答案.【詳解】解:∵,,,∴,∴,當且僅當即,時等號成立,∴,故選:D.【點睛】本題主要考查基本不等式求最值,要注意條件“一正二定三相等”,屬于中檔題.6、B【解析】
本題首先可以根據(jù)題目所給出的圖像得出函數(shù)的解析式,然后根據(jù)三角函數(shù)平移的相關性質(zhì)以及函數(shù)的解析式得出函數(shù)的解析式,最后通過函數(shù)的解析式求出函數(shù)的單調(diào)遞增區(qū)間,即可得出結果.【詳解】由函數(shù)的圖像可知函數(shù)的周期為、過點、最大值為3,所以,,,,,所以取時,函數(shù)的解析式為,將函數(shù)的圖像向左平移個單位長度得,當時,即時,函數(shù)單調(diào)遞增,故選B.【點睛】本題考查三角函數(shù)的相關性質(zhì),主要考查三角函數(shù)圖像的相關性質(zhì)以及三角函數(shù)圖像的變換,函數(shù)向左平移個單位所得到的函數(shù),考查推理論證能力,是中檔題.7、A【解析】
由表中的數(shù)據(jù)分析得:自變量基本上是等速增加,相應的函數(shù)值增加的速度越來越快,結合基本初等函數(shù)的單調(diào)性,即可得出答案.【詳解】對于A:函數(shù)在是單調(diào)遞增,且函數(shù)值增加速度越來越快,將自變量代入,相應的函數(shù)值,比較接近,符合題意,所以正確;對于B:函數(shù)值隨著自變量增加是等速的,不合題意;對于C:函數(shù)值隨著自變量的增加比線性函數(shù)還緩慢,不合題意;選項D:函數(shù)值隨著自變量增加反而減少,不合題意.故選:A.【點睛】本題考查函數(shù)模型的選擇和應用問題,解題的關鍵是掌握各種基本初等函數(shù),如一次函數(shù),二次函數(shù),指數(shù)函數(shù),對數(shù)函數(shù)的圖像與性質(zhì),屬于基礎題.8、A【解析】
已知等式左邊用誘導公式變形后用正弦和二倍角公式化簡,右邊用切化弦法變形,再由二倍角公式化簡后可得.【詳解】,,∴,.故選:A.【點睛】本題考查誘導公式,考查二倍角公式,同角間的三角函數(shù)關系,掌握三角函數(shù)恒等變形公式,確定選用公式的順序是解題關鍵.9、D【解析】
根據(jù)確定平面的公理和推論逐一判斷即可得解.【詳解】解:對選項:經(jīng)過兩條相交直線有且只有一個平面,故錯誤.對選項:經(jīng)過兩條平行直線有且只有一個平面,故錯誤.對選項:經(jīng)過直線與直線外一點有且只有一個平面,故錯誤.對選項:過共線的三點,有無數(shù)個平面,故正確;故選:.【點睛】本題主要考查確定平面的公理及推論.解題的關鍵是要對確定平面的公理及推論理解透徹,屬于基礎題.10、B【解析】
由等差數(shù)列前項和公式得出,結合數(shù)列為遞減數(shù)列確定,從而得到最大時,的值為10.【詳解】由題意可得等差數(shù)列的首項,公差則數(shù)列為遞減數(shù)列即當時,最大故選B?!军c睛】本題對等差數(shù)列前項和以及通項公式,關鍵是將轉(zhuǎn)化為,結合數(shù)列的單調(diào)性確定最大時,的值為10.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用等差中項的基本性質(zhì)求得,,并利用等差中項的性質(zhì)求出的值,由此可得出的值.【詳解】由等差中項的性質(zhì)可得,同理,由于、、成等差數(shù)列,所以,則,因此,.故答案為:.【點睛】本題考查利用等差中項的性質(zhì)求值,考查計算能力,屬于基礎題.12、【解析】
由圓的性質(zhì)可知,直線與直線垂直,,直線的斜率,,解得.故填:3.【點睛】本題考查了相交圓的幾何性質(zhì),和直線垂直的關系,考查數(shù)形結合的思想與計算能力,屬于基礎題.13、【解析】
試題分析:試題分析:由得,平移直線由圖象可知,當過時目標函數(shù)的最大值為,即,則,當且僅當,即時,取等號,故的最小值為.考點:1、利用可行域求線性目標函數(shù)的最值;2、利用基本不等式求最值.【方法點晴】本題主要考查可行域、含參數(shù)目標函數(shù)最優(yōu)解和均值不等式求最值,屬于難題.含參變量的線性規(guī)劃問題是近年來高考命題的熱點,由于參數(shù)的引入,提高了思維的技巧、增加了解題的難度,此類問題的存在增加了探索問題的動態(tài)性和開放性,此類問題一般從目標函數(shù)的結論入手,對目標函數(shù)變化過程進行詳細分析,對變化過程中的相關量的準確定位,是求最優(yōu)解的關鍵.14、5【解析】試題分析:易得.設,則消去得:,所以點P在以AB為直徑的圓上,,所以,.法二、因為兩直線的斜率互為負倒數(shù),所以,點P的軌跡是以AB為直徑的圓.以下同法一.【考點定位】1、直線與圓;2、重要不等式.15、;【解析】
利用垂徑定理,即圓心與弦中點連線垂直于弦.【詳解】圓標準方程為,圓心為,,∵是中點,∴,即,∴的方程為,即.故答案為.【點睛】本題考查垂徑定理.圓中弦問題,常常要用垂徑定理,如弦長(其中為圓心到弦所在直線的距離).16、【解析】
根據(jù)莖葉圖中數(shù)據(jù)和中位數(shù)的定義可構造方程求得.【詳解】甲組數(shù)據(jù)的中位數(shù)為,解得:故答案為:【點睛】本題考查莖葉圖中中位數(shù)相關問題的求解,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)得,得或,結合取值范圍求解;(2)結合換元法處理二次不等式恒成立求參數(shù)的取值范圍.【詳解】(1),即,即有,所以或,即或由于,,所以;(2),令,對任意都有恒成立,即對恒成立,只需,解得:,所以的最大值為.【點睛】此題考查根據(jù)三角函數(shù)值相等求自變量取值的關系,利用換元法轉(zhuǎn)化為二次函數(shù)處理不等式問題,根據(jù)不等式恒成立求參數(shù)的取值范圍,涉及根的分布的問題.18、(1)見解析;(2).【解析】
由題意可得,對a討論,可得所求解集;求得,由反比例函數(shù)的單調(diào)性,可得,解不等式即可得到所求范圍.【詳解】的不等式,即為,即為,當時,解集為;當時,解集為;當時,解集為,;,由在區(qū)間上是單調(diào)減函數(shù),可得,解得.即a的范圍是.【點睛】本題考查分式不等式的解法,注意運用分類討論思想方法,考查函數(shù)的單調(diào)性的判斷和運用,考查運算能力,屬于基礎題.19、(1)an=2×【解析】試題分析:(1)設出等比數(shù)列{an}的公比q,利用條件a1=4,a3﹣a4(4)數(shù)列{an+bn}是由一個等差數(shù)列和一個等比數(shù)列對應項相加得來的,所以可以采用拆項分組的方法,轉(zhuǎn)化為等差數(shù)列、等比數(shù)列的前n項和問題來解決.試題解析:解:(1)設數(shù)列{an}的公比為q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合題意,舍去,故q=3.∴an=4×3n﹣1;(4)∵數(shù)列{bn}是首項b1=1,公差d=4的等差數(shù)列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b1+b4++bn)=+=3n﹣1+n4.考點:等差數(shù)列與等比數(shù)列.20、(1)見證明;(2)【解析】
(1)由變形得,即,從而可證得結論成立,進而可求出通項公式;(2)由(1)及條件可求出,然后根據(jù)分組求和法可得.【詳解】(1)證明:因為,所以.因為所以所以.又,所以是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)學圖形在兒童智力開發(fā)中的作用
- 科學實驗教學對小學生綜合素質(zhì)的培養(yǎng)策略
- 項目突發(fā)環(huán)境事件應急預案
- 二手車批發(fā)合作合同協(xié)議
- 個人向個人臨時借款合同模板
- 上海市租賃合同模板及示例
- 不銹鋼期貨電子交易合同
- 個人房屋銷售合同簡易范本
- 個人租房合同范本權威版
- 上海市住宅租賃合同
- 云南省曲靖市羅平縣2024-2025學年高二上學期期末地理試題( 含答案)
- 中國糖尿病防治指南(2024版)要點解讀
- 九宮數(shù)獨200題(附答案全)
- β內(nèi)酰胺類抗生素與合理用藥
- 何以中國:公元前2000年的中原圖景
- 第一章:公共政策理論模型
- 中考數(shù)學試題(含答案)共12套
- GB/T 4513.7-2017不定形耐火材料第7部分:預制件的測定
- GB/T 10205-2009磷酸一銨、磷酸二銨
- 公司財務制度及流程
- 深圳版初中英語單詞匯總
評論
0/150
提交評論