2023-2024學(xué)年福建省閩侯二中五校教學(xué)聯(lián)合體高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁(yè)
2023-2024學(xué)年福建省閩侯二中五校教學(xué)聯(lián)合體高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁(yè)
2023-2024學(xué)年福建省閩侯二中五校教學(xué)聯(lián)合體高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁(yè)
2023-2024學(xué)年福建省閩侯二中五校教學(xué)聯(lián)合體高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁(yè)
2023-2024學(xué)年福建省閩侯二中五校教學(xué)聯(lián)合體高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年福建省閩侯二中五校教學(xué)聯(lián)合體高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,,則方程有實(shí)數(shù)根的概率為()A. B. C. D.2.的內(nèi)角的對(duì)邊分別為,面積為,若,則外接圓的半徑為()A. B. C. D.3.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗(yàn)證n=1成立時(shí),左邊的項(xiàng)是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a44.趙爽是三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家,他創(chuàng)制了一幅“勾股圓方圖”,也稱“趙爽弦圖”,如圖,若在大正方形內(nèi)隨機(jī)取-點(diǎn),這一點(diǎn)落在小正方形內(nèi)的概率為,則勾與股的比為()A. B. C. D.5.在等比數(shù)列{an}中,a2=8,a5=64,,則公比q為()A.2 B.3 C.4 D.86.從A,B,C三個(gè)同學(xué)中選2名代表,則A被選中的概率為()A. B. C. D.7.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何的體積為()立方單位.A. B.C. D.8.已知,,三點(diǎn),則的形狀是()A.鈍角三角形 B.直角三角形C.銳角三角形 D.等腰直角三角形9.在三棱柱中,平面,,,,E,F(xiàn)分別是,上的點(diǎn),則三棱錐的體積為()A.6 B.12 C.24 D.3610.函數(shù)的部分圖象如圖所示,函數(shù),則下列結(jié)論正確的是()A.B.函數(shù)與的圖象均關(guān)于直線對(duì)稱C.函數(shù)與的圖象均關(guān)于點(diǎn)對(duì)稱D.函數(shù)與在區(qū)間上均單調(diào)遞增二、填空題:本大題共6小題,每小題5分,共30分。11.我國(guó)高鐵發(fā)展迅速,技術(shù)先進(jìn).經(jīng)統(tǒng)計(jì),在經(jīng)停某站的高鐵列車(chē)中,有10個(gè)車(chē)次的正點(diǎn)率為0.97,有20個(gè)車(chē)次的正點(diǎn)率為0.98,有10個(gè)車(chē)次的正點(diǎn)率為0.99,則經(jīng)停該站高鐵列車(chē)所有車(chē)次的平均正點(diǎn)率的估計(jì)值為_(kāi)__________.12.函數(shù)的圖象在點(diǎn)處的切線方程是,則__________.13.已知等差數(shù)列中,其前項(xiàng)和為,且,,當(dāng)取最大值時(shí),的值等于_____.14.已知圓柱的底面圓的半徑為2,高為3,則該圓柱的側(cè)面積為_(kāi)_______.15.已知,,且,若恒成立,則實(shí)數(shù)的取值范圍是____.16.?dāng)?shù)列是等比數(shù)列,,,則的值是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù).(1)當(dāng)時(shí),,求的值;(2)令,若對(duì)任意都有恒成立,求的最大值.18.已知向量,,,設(shè)函數(shù).(1)求的最小正周期;(2)求在上的最大值和最小值.19.設(shè)的內(nèi)角的對(duì)邊分別為,且滿足.(1)試判斷的形狀,并說(shuō)明理由;(2)若,試求面積的最大值.20.在平面直角坐標(biāo)系中,已知圓過(guò)坐標(biāo)原點(diǎn)且圓心在曲線上.(1)若圓分別與軸、軸交于點(diǎn)、(不同于原點(diǎn)),求證:的面積為定值;(2)設(shè)直線與圓交于不同的兩點(diǎn)、,且,求圓的方程;(3)設(shè)直線與(2)中所求圓交于點(diǎn)、,為直線上的動(dòng)點(diǎn),直線、與圓的另一個(gè)交點(diǎn)分別為、,求證:直線過(guò)定點(diǎn).21.已知函數(shù),(1)求的單調(diào)遞增區(qū)間.(2)求在區(qū)間的最大值和最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】方程有實(shí)數(shù)根,則:,即:,則:,如圖所示,由幾何概型計(jì)算公式可得,滿足題意的概率值為:.本題選擇B選項(xiàng).2、A【解析】

出現(xiàn)面積,可轉(zhuǎn)化為觀察,和余弦定理很相似,但是有差別,差別就是條件是形式,而余弦定理中是形式,但是我們可以注意到:,所以可以完成本題.【詳解】由,所以在三角形中,再由正弦定理所以答案選擇A.【點(diǎn)睛】本題很靈活,在常數(shù)4的處理問(wèn)題上有點(diǎn)巧妙,然后再借助余弦定理及正弦定理,難度較大.3、C【解析】

在驗(yàn)證時(shí),左端計(jì)算所得的項(xiàng),把代入等式左邊即可得到答案.【詳解】解:用數(shù)學(xué)歸納法證明,

在驗(yàn)證時(shí),把當(dāng)代入,左端.

故選:C.【點(diǎn)睛】此題主要考查數(shù)學(xué)歸納法證明等式的問(wèn)題,屬于概念性問(wèn)題.4、B【解析】

分別求解出小正方形和大正方形的面積,可知面積比為,從而構(gòu)造方程可求得結(jié)果.【詳解】由圖形可知,小正方形邊長(zhǎng)為小正方形面積為:,又大正方形面積為:,即:解得:本題正確選項(xiàng):【點(diǎn)睛】本題考查幾何概型中的面積型的應(yīng)用,關(guān)鍵是能夠利用概率構(gòu)造出關(guān)于所求量的方程.5、A【解析】,選A.6、D【解析】

先求出基本事件總數(shù),被選中包含的基本事件個(gè)數(shù),由此能求出被選中的概率.【詳解】從,,三個(gè)同學(xué)中選2名代表,基本事件總數(shù)為:,共個(gè),被選中包含的基本事件為:,共2個(gè),被選中的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查列舉法和運(yùn)算求解能力,是基礎(chǔ)題.7、D【解析】由三視圖可知幾何體是由一個(gè)四棱錐和半個(gè)圓柱組合而成的,所以所求的體積為,故選D.8、D【解析】

計(jì)算三角形三邊長(zhǎng)度,通過(guò)邊關(guān)系進(jìn)行判斷.【詳解】由兩點(diǎn)之間的距離公式可得:,,,因?yàn)椋夜试撊切螢榈妊苯侨切?故選:D.【點(diǎn)睛】本題考查兩點(diǎn)之間的距離公式,屬基礎(chǔ)題.9、B【解析】

等體積法:.求出的面積和F到平面的距離,代入公式即可.【詳解】由題意可得,的面積為,因?yàn)椋?,平面ABC,所以點(diǎn)C到平面的距離為,即點(diǎn)F到平面的距離為4,則三棱錐的體積為.故三棱錐的體積為12.【點(diǎn)睛】此題考察了三棱錐體積的等體積法,通過(guò)變化頂點(diǎn)和底面進(jìn)行轉(zhuǎn)化,屬于較易題目.10、D【解析】

由三角函數(shù)圖像可得,,再結(jié)合三角函數(shù)圖像的性質(zhì)逐一判斷即可得解.【詳解】解:由函數(shù)的部分圖象可得,,即,則,又函數(shù)圖像過(guò)點(diǎn),則,即,又,即,即,則對(duì)于選項(xiàng)A,顯然錯(cuò)誤;對(duì)于選項(xiàng)B,函數(shù)的圖像關(guān)于直線對(duì)稱,即B錯(cuò)誤;對(duì)于選項(xiàng)C,函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱,即C錯(cuò)誤;對(duì)于選項(xiàng)D,函數(shù)的增區(qū)間為,函數(shù)的增區(qū)間為,又,,即D正確,故選:D.【點(diǎn)睛】本題考查了利用三角函數(shù)圖像求函數(shù)解析式,重點(diǎn)考查了三角函數(shù)圖像的性質(zhì),屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、1.98.【解析】

本題考查通過(guò)統(tǒng)計(jì)數(shù)據(jù)進(jìn)行概率的估計(jì),采取估算法,利用概率思想解題.【詳解】由題意得,經(jīng)停該高鐵站的列車(chē)正點(diǎn)數(shù)約為,其中高鐵個(gè)數(shù)為11+21+11=41,所以該站所有高鐵平均正點(diǎn)率約為.【點(diǎn)睛】本題考點(diǎn)為概率統(tǒng)計(jì),滲透了數(shù)據(jù)處理和數(shù)學(xué)運(yùn)算素養(yǎng).側(cè)重統(tǒng)計(jì)數(shù)據(jù)的概率估算,難度不大.易忽視概率的估算值不是精確值而失誤,根據(jù)分類抽樣的統(tǒng)計(jì)數(shù)據(jù),估算出正點(diǎn)列車(chē)數(shù)量與列車(chē)總數(shù)的比值.12、【解析】由導(dǎo)數(shù)的幾何意義可知,又,所以.13、或【解析】

設(shè)等差數(shù)列的公差為,由可得出與的等量關(guān)系,然后求出的表達(dá)式,解不等式,即可得出使得取得最大值的正整數(shù)的值.【詳解】設(shè)等差數(shù)列的公差為,由,可得,可得,,令,即,,解得.因此,當(dāng)或時(shí),取得最大值.故答案為:或.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和的最大值的求解,可利用二次函數(shù)的基本性質(zhì)來(lái)求,也可以轉(zhuǎn)化為等差數(shù)列所有的非負(fù)項(xiàng)之和的問(wèn)題求解,考查化歸與轉(zhuǎn)化思想,屬于中等題.14、【解析】

圓柱的側(cè)面打開(kāi)是一個(gè)矩形,長(zhǎng)為底面的周長(zhǎng),寬為圓柱的高,即,帶入數(shù)據(jù)即可.【詳解】因?yàn)閳A柱的底面圓的半徑為2,所以圓柱的底面圓的周長(zhǎng)為,則該圓柱的側(cè)面積為.【點(diǎn)睛】此題考察圓柱側(cè)面積公式,屬于基礎(chǔ)題目.15、(-4,2)【解析】試題分析:因?yàn)楫?dāng)且僅當(dāng)時(shí)取等號(hào),所以考點(diǎn):基本不等式求最值16、【解析】

由題得計(jì)算得解.【詳解】由題得,所以.因?yàn)榈缺葦?shù)列同號(hào),所以.故答案為:【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)和等比中項(xiàng)的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)得,得或,結(jié)合取值范圍求解;(2)結(jié)合換元法處理二次不等式恒成立求參數(shù)的取值范圍.【詳解】(1),即,即有,所以或,即或由于,,所以;(2),令,對(duì)任意都有恒成立,即對(duì)恒成立,只需,解得:,所以的最大值為.【點(diǎn)睛】此題考查根據(jù)三角函數(shù)值相等求自變量取值的關(guān)系,利用換元法轉(zhuǎn)化為二次函數(shù)處理不等式問(wèn)題,根據(jù)不等式恒成立求參數(shù)的取值范圍,涉及根的分布的問(wèn)題.18、(1)(2)時(shí),取最小值;時(shí),取最大值1.【解析】

試題分析:(1)根據(jù)向量數(shù)量積、二倍角公式及配角公式得,再根據(jù)正弦函數(shù)性質(zhì)得.(2)先根據(jù)得,,再根據(jù)正弦函數(shù)性質(zhì)得最大值和最小值.試題解析:(1),最小正周期為.(2)當(dāng)時(shí),,由圖象可知時(shí)單調(diào)遞增,時(shí)單調(diào)遞減,所以當(dāng),即時(shí),取最小值;當(dāng),即時(shí),取最大值1.19、(1);(2).【解析】試題分析:(1)由,利用正、余弦定理,得,化簡(jiǎn)整理即可證明:為直角三角形;(2)利用,,根據(jù)基本不等式可得:,即可求出面積的最大值.試題解析:解法1:(1)∵,由正、余弦定理,得,化簡(jiǎn)整理得:,∵,所以,故為直角三角形,且;(2)∵,∴,當(dāng)且僅當(dāng)時(shí),上式等號(hào)成立,∴.故,即面積的最大值為.解法2(1)由已知:,又∵,,∴,而,∴,∴,故,∴為直角三角形.(2)由(1),∴.∵,∴,∴,令,∵,∴,∴.而在上單調(diào)遞增,∴.20、(1)證明見(jiàn)解析;(2);(3)證明見(jiàn)解析.【解析】

(1)由題意設(shè)圓心坐標(biāo)為,可得半徑為,求出圓的方程,分別令、,可得出點(diǎn)、的坐標(biāo),利用三角形的面積公式即可證明出結(jié)論成立;(2)由,知,利用兩直線垂直的等價(jià)條件:斜率之積為,解方程可得,討論的取值,求得圓心到直線的距離,即可得到所求圓的方程;(3)設(shè),、,求得、的坐標(biāo),以及直線、的方程,聯(lián)立圓的方程,利用韋達(dá)定理,結(jié)合,得出,設(shè)直線的方程為,代入圓的方程,利用韋達(dá)定理,可得、之間的關(guān)系,即可得出所求的定點(diǎn).【詳解】(1)由題意可設(shè)圓心為,則圓的半徑為,則圓的方程為,即.令,得,得;令,得,得.(定值);(2)由,知,所以,解得.當(dāng)時(shí),圓心到直線的距離小于半徑,符合題意;當(dāng)時(shí),圓心到直線的距離大于半徑,不符合題意.所以,所求圓的方程為;(3)設(shè),,,又知,,所以,.因?yàn)椋?將,代入上式,整理得.①設(shè)直線的方程為,代入,整理得.所以,.代入①式,并整理得,即,解得或.當(dāng)時(shí),直線的方程為,過(guò)定點(diǎn);當(dāng)時(shí),直線的方程為,過(guò)定點(diǎn)檢驗(yàn)定點(diǎn)和、共線,不合題意,舍去.故過(guò)定點(diǎn).【點(diǎn)睛】本題考查圓的方程的求法和運(yùn)用,注意運(yùn)用聯(lián)立直線方程和圓的方程,消去一個(gè)未知數(shù),運(yùn)用韋達(dá)定理,考查直線恒過(guò)定點(diǎn)的求法,考查運(yùn)算能力,屬于難題.21、(1),;(2)最大值為,最小值為【解析】

利用二倍角公

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論