版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年山東省濟南三中高一數(shù)學第二學期期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,設(shè)角,,的對邊分別是,,,若,,,則其面積等于()A. B. C. D.2.在學習等差數(shù)列時,我們由,,,,得到等差數(shù)列的通項公式是,象這樣由特殊到一般的推理方法叫做()A.不完全歸納法 B.數(shù)學歸納法 C.綜合法 D.分析法3.邊長為的正方形中,點是的中點,點是的中點,將分別沿折起,使兩點重合于,則直線與平面所成角的正弦值為()A. B. C. D.4.已知函數(shù)向左平移個單位長度后,其圖象關(guān)于軸對稱,則的最小值為()A. B. C. D.5.在中,角,,所對的邊分別為,,,若,,則等于()A.1 B.2 C. D.46.在中,若,則的面積為().A.8 B.2 C. D.47.如圖,平行四邊形的對角線相交于點,是的中點,的延長線與相交于點,若,,,則()A. B. C. D.8.長方體,,,,則異面直線與所成角的余弦值為A. B. C. D.9.某數(shù)學競賽小組有3名男同學和2名女同學,現(xiàn)從這5名同學中隨機選出2人參加數(shù)學競賽(每人被選到的可能性相同).則選出的2人中恰有1名男同學和1名女同學的概率為()A. B. C. D.10.在中,角的對邊分別是,若,且三邊成等比數(shù)列,則的值為()A. B. C.1 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域是________.12.向邊長為的正方形內(nèi)隨機投粒豆子,其中粒豆子落在到正方形的頂點的距離不大于的區(qū)域內(nèi)(圖中陰影區(qū)域),由此可估計的近似值為______.(保留四位有效數(shù)字)13.的內(nèi)角的對邊分別為,若,,,則的面積為__________.14.已知數(shù)列,其中,若數(shù)列中,恒成立,則實數(shù)的取值范圍是_______.15.一條河的兩岸平行,河的寬度為560m,一艘船從一岸出發(fā)到河對岸,已知船的靜水速度,水流速度,則行駛航程最短時,所用時間是__________(精確到).16.某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件,為了了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣的方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過兩點,且圓心在軸上.(1)求圓的方程;(2)若直線,且截軸所得縱截距為5,求直線截圓所得線段的長度.18.已知,且,向量,.(1)求函數(shù)的解析式,并求當時,的單調(diào)遞增區(qū)間;(2)當時,的最大值為5,求的值;(3)當時,若不等式在上恒成立,求實數(shù)的取值范圍.19.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)求函數(shù)在上的最大值和最小值.20.等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,滿足,,,,.(1)求數(shù)列和的通項公式;(2)令,求數(shù)列的前項和.21.已知三棱錐中,是邊長為的正三角形,;(1)證明:平面平面;(2)設(shè)為棱的中點,求二面角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
直接利用三角形的面積的公式求出結(jié)果.【詳解】解:中,角,,的對邊邊長分別為,,,若,,,則,故選:.【點睛】本題考查的知識要點:三角形面積公式的應用及相關(guān)的運算問題,屬于基礎(chǔ)題.2、A【解析】
根據(jù)題干中的推理由特殊到一般的推理屬于歸納推理,但又不是數(shù)學歸納法,從而可得出結(jié)果.【詳解】本題由前三項的規(guī)律猜想出一般項的特點屬于歸納法,但本題并不是數(shù)學歸納法,因此,本題中的推理方法是不完全歸納法,故選:A.【點睛】本題考查歸納法的特點,判斷時要區(qū)別數(shù)學歸納法與不完全歸納法,考查對概念的理解,屬于基礎(chǔ)題.3、D【解析】
在正方形中連接,交于點,根據(jù)正方形的性質(zhì),在折疊圖中平面,得到,從而平面,面平面,則是在平面上的射影,找到直線與平面所所成的角.然后在直角三角中求解.【詳解】如圖所示:在正方形中連接,交于點,在折疊圖,連接,因為,所以平面,所以,又因為,所以平面,又因為平面,所以平面,則是在平面上的射影,所以即為所求.因為故選:D【點睛】本題主要考查了折疊圖問題,還考查了推理論證和空間想象的能力,屬于中檔題.4、A【解析】
根據(jù)函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象關(guān)于軸對稱,即為偶函數(shù).,求得的最小值.【詳解】把函數(shù)向左平移個單位長度后.可得的圖象.再根據(jù)所得圖象關(guān)于軸對稱,即為偶函數(shù).所以即,當時,的值最小.所以的最小值為:故選:A【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.5、D【解析】
直接利用正弦定理得到,帶入化簡得到答案.【詳解】正弦定理:即:故選D【點睛】本題考查了正弦定理,意在考查學生的計算能力.6、C【解析】
由正弦定理結(jié)合已知,可以得到的關(guān)系,再根據(jù)余弦定理結(jié)合,可以求出的值,再利用三角形面積公式求出三角形的面積即可.【詳解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面積為,故本題選C.【點睛】本題考查了正弦定理、余弦定理、三角形面積公式,考查了數(shù)學運算能力.7、B【解析】
先根據(jù)勾股定理判斷為直角三角形,且,,再根據(jù)三角形相似可得,然后由向量的加減的幾何意義以及向量的數(shù)量積公式計算即可.【詳解】,,,,為直角三角形,且,,平行行四邊形的對角線相交于點,是的中點,,,,,故選B.【點睛】本題主要考查向量的加減的幾何意義以及向量的數(shù)量積公式的應用.8、A【解析】
由題,找出,故(或其補角)為異面直線與所成角,然后解出答案即可.【詳解】如圖,連接,由,(或其補角)為異面直線與所成角,由已知可得,則..即異面直線與所成角的余弦值為.故選A.【點睛】本題考查了異面直線的夾角問題,找平行線,找出夾角是解題的關(guān)鍵,屬于較為基礎(chǔ)題.9、A【解析】
把5名學生編號,然后寫出任取2人的所有可能,按要求計數(shù)后可得概率.【詳解】3名男生編號為,兩名女生編號為,任選2人的所有情形為:,,共10種,其中恰有1名男生1名女生的有共6種,所以所求概率為.【點睛】本題考查古典概型,方法是列舉法.10、C【解析】
先利用正弦定理邊角互化思想得出,再利余弦定理以及條件得出可得出是等邊三角形,于此可得出的值.【詳解】,由正弦定理邊角互化的思想得,,,,則.、、成等比數(shù)列,則,由余弦定理得,化簡得,,則是等邊三角形,,故選C.【點睛】本題考查正弦定理邊角互化思想的應用,考查余弦定理的應用,解題時應根據(jù)等式結(jié)構(gòu)以及已知元素類型合理選擇正弦定理與余弦定理求解,考查計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
求出函數(shù)在上的值域,根據(jù)原函數(shù)與反函數(shù)的關(guān)系即可求解.【詳解】因為函數(shù),當時是單調(diào)減函數(shù)當時,;當時,所以在上的值域為根據(jù)反函數(shù)的定義域就是原函數(shù)的值域可得函數(shù)的值域為故答案為:【點睛】本題求一個反三角函數(shù)的值域,著重考查了余弦函數(shù)的圖像與性質(zhì)和反函數(shù)的性質(zhì)等知識,屬于基礎(chǔ)題.12、3.1【解析】
根據(jù)已知條件求出滿足條件的正方形的面積,及到頂點的距離不大于1的區(qū)域(圖中陰影區(qū)域)的面積比值等于頻率即可求出答案.【詳解】依題意得,正方形的面積,陰影部分的面積,故落在到正方形的頂點的距離不大于1的區(qū)域內(nèi)(圖中陰影區(qū)域)的概率,隨機投10000粒豆子,其中1968粒豆子落在到正方形的頂點的距離不大于1的區(qū)域內(nèi)(圖中陰影區(qū)域)的頻率為:,即有:,解得:,故答案為3.1.【點睛】幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件的基本事件對應的“幾何度量”(A),再求出總的基本事件對應的“幾何度量”,最后根據(jù)求解.利用頻率約等于概率,即可求解。13、【解析】
由已知及正弦定理可得:,進而利用余弦定理即可求得a的值,進而可求c,利用三角形的面積公式即可求解.【詳解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案為:.【點睛】本題注意考查余弦定理與正弦定理的應用,屬于中檔題.正弦定理主要有三種應用:求邊和角、邊角互化、外接圓半徑.14、【解析】
由函數(shù)(數(shù)列)單調(diào)性確定的項,哪些項取,哪些項取,再由是最小項,得不等關(guān)系.【詳解】由題意數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,存在,使得時,,當時,,∵數(shù)列中,是唯一的最小項,∴或,或,或,綜上.∴的取值范圍是.故答案為:.【點睛】本題考查數(shù)列的單調(diào)性與最值.解題時楞借助函數(shù)的單調(diào)性求解.但數(shù)列是特殊的函數(shù),它的自變量只能取正整數(shù),因此討論時與連續(xù)函數(shù)有一些區(qū)別.15、6【解析】
先確定船的方向,再求出船的速度和時間.【詳解】因為行程最短,所以船應該朝上游的方向行駛,所以船的速度為km/h,所以所用時間是.故答案為6【點睛】本題主要考查平面向量的應用,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.16、13【解析】(解法1)由分層抽樣得,解得n=13.(解法2)從甲乙丙三個車間依次抽取a,b,c個樣本,則120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)設(shè)圓心的坐標為,利用求出的值,可確定圓心坐標,并計算出半徑長,然后利用標準方程可寫出圓的方程;(2)由,得出直線的斜率與直線的斜率相等,可得出直線的斜率,再由截軸所得縱截距為,可得出直線的方程,計算圓心到直線的距離,則.【詳解】(1)設(shè)圓心,則,則所以圓方程:.(2)由于,且,則,則圓心到直線的距離為:.由于,【點睛】本題考查圓的方程的求解以及直線截圓所得弦長的計算,再解直線與圓相關(guān)的問題時,可充分利用圓的幾何性質(zhì),利用幾何法來處理,問題的核心在于計算圓心到直線的距離的計算,在計算弦長時,也可以利用弦長公式來計算。18、(1),單調(diào)增區(qū)間為;(2)或;(3).【解析】試題分析:(Ⅰ)化簡,解不等式求得的范圍即得增區(qū)間(2)討論a的正負,確定最大值,求a;(3)化簡絕對值不等式,轉(zhuǎn)化在上恒成立,即,求出在上的最大值,最小值即得解.試題解析:(1)∵∴∴單調(diào)增區(qū)間為(2)當時,若,,∴若,,∴∴綜上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范圍.點睛:本題考查了平面向量的數(shù)量積的應用,三角函數(shù)的單調(diào)性與最值,三角函數(shù)的化簡,恒成立問題的處理及分類討論的數(shù)學思想,綜合性強.19、(1);(2)5;-2【解析】
(1)根據(jù)二倍角公式和輔助角公式化簡即可(2)由求出的范圍,再根據(jù)函數(shù)圖像求最值即可【詳解】(1),,令,即單減區(qū)間為;(2)由,當時,的最小值為:-2;當時,的最大值為:5【點睛】本題考查三角函數(shù)解析式的化簡,函數(shù)基本性質(zhì)的求解(周期、單調(diào)性、在給定區(qū)間的最值),屬于中檔題20、(1),;(2)【解析】
(1)由是等差數(shù)列,,,可求出,由是等比數(shù)列,,,,可求出;(2)將和的通項公式代入,則,利用裂項相消求和法可求出.【詳解】(1),,,解得.又,,.(2)由(1),得【點睛】本題考查了等差數(shù)列和等比數(shù)列的通項公式的求法,考查了用裂項相消求數(shù)列的前項和,屬于中檔題.21、(1)見解析(2)【解析】
(1)由題意結(jié)合正弦定理可得,據(jù)此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年訴訟代理常年法律顧問服務協(xié)議3篇
- 快遞話務員工作總結(jié)
- 2024年裝飾公司戰(zhàn)略合作協(xié)議
- 2024年金融科技項目合作推廣服務協(xié)議3篇
- 2024年電子競技教練合同3篇
- 2025年度室內(nèi)外一體化裝修工程承包合同2篇
- 2024年高級合成潤滑油采購合同版
- 2024年食品添加劑研發(fā)代工生產(chǎn)合作協(xié)議3篇
- 物料評估編碼標準
- 2024年財產(chǎn)分割協(xié)議:重組家庭離異規(guī)定3篇
- 2024信息技術(shù)應用創(chuàng)新信息系統(tǒng)適配改造成本度量
- 廣東省廣州市2025屆高三上學期12月調(diào)研測試(零模)英語 含解析
- 陜西測繪地理信息局所屬事業(yè)單位2025年上半年招聘87人和重點基礎(chǔ)提升(共500題)附帶答案詳解
- 保險學期末試題及答案
- 高一數(shù)學上學期期末模擬試卷01-【中職專用】2024-2025學年高一數(shù)學上學期(高教版2023基礎(chǔ)模塊)(解析版)
- 嚴重精神障礙患者隨訪服務記錄表
- 2024-2025學年人教版八年級上冊地理期末測試卷(一)(含答案)
- 統(tǒng)編版(2024新版)七年級上冊道德與法治第四單元綜合測試卷(含答案)
- 滬教版英語小學六年級上學期期末試題與參考答案(2024-2025學年)
- 北京市海淀區(qū)2023-2024學年四年級上學期語文期末試卷
- 混凝土企業(yè)安全培訓
評論
0/150
提交評論