版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省佛山市順德區(qū)中考數學最后沖刺模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數為()A.110° B.115° C.120° D.130°2.在中國集郵總公司設計的2017年紀特郵票首日紀念截圖案中,可以看作中心對稱圖形的是()A.千里江山圖B.京津冀協同發(fā)展C.內蒙古自治區(qū)成立七十周年D.河北雄安新區(qū)建立紀念3.已知∠BAC=45。,一動點O在射線AB上運動(點O與點A不重合),設OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>4.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.5.一元二次方程(x+2017)2=1的解為()A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20176.下列各組數中,互為相反數的是()A.﹣2與2 B.2與2 C.3與 D.3與37.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.8338.有6個相同的立方體搭成的幾何體如圖所示,則它的主視圖是()A. B. C. D.9.地球平均半徑約等于6400000米,6400000用科學記數法表示為()A.64×105 B.6.4×105 C.6.4×106 D.6.4×10710.已知兩點都在反比例函數圖象上,當時,,則的取值范圍是()A. B. C. D.11.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?2.平面直角坐標系內一點關于原點對稱點的坐標是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若反比例函數的圖象與一次函數y=ax+b的圖象交于點A(﹣2,m)、B(5,n),則3a+b的值等于_____.14.已知點P(a,b)在反比例函數y=的圖象上,則ab=_____.15.一個樣本為1,3,2,2,a,b,c,已知這個樣本的眾數為3,平均數為2,則這組數據的中位數為______.16.如圖,矩形ABCD,AB=2,BC=1,將矩形ABCD繞點A順時針旋轉90°得矩形AEFG,連接CG、EG,則∠CGE=________.17.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用18.如圖,在矩形ABCD中,AB=,AD=1,把該矩形繞點A順時針旋轉α度得矩形AB′C′D′,點C′落在AB的延長線上,則圖中陰影部分的面積是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一農戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長、寬分別為多少時,豬舍面積為80m2?20.(6分)如圖,一次函數y=kx+b與反比例函數y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求一次函數y=kx+b和y=的表達式;(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標;(3)反比例函數y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)21.(6分)(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如下統(tǒng)計圖:根據統(tǒng)計圖所提供的信息,解答下列問題:(1)本次抽樣調查中的樣本容量是;(2)補全條形統(tǒng)計圖;(3)該校共有2000名學生,請根據統(tǒng)計結果估計該校課余興趣愛好為“打球”的學生人數.22.(8分)如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)B點坐標為,并求拋物線的解析式;(2)求線段PC長的最大值;(3)若△PAC為直角三角形,直接寫出此時點P的坐標.23.(8分)如圖,甲、乙用4張撲克牌玩游戲,他倆將撲克牌洗勻后背面朝上,放置在桌面上,每人抽一張,甲先抽,乙后抽,抽出的牌不放回.甲、乙約定:只有甲抽到的牌面數字比乙大時甲勝;否則乙勝.請你用樹狀圖或列表法說明甲、乙獲勝的機會是否相同.24.(10分)網上購物已經成為人們常用的一種購物方式,售后評價特別引人關注,消費者在網店購買某種商品后,對其有“好評”、“中評”、“差評”三種評價,假設這三種評價是等可能的.(1)小明對一家網店銷售某種商品顯示的評價信息進行了統(tǒng)計,并列出了兩幅不完整的統(tǒng)計圖.利用圖中所提供的信息解決以下問題:①小明一共統(tǒng)計了個評價;②請將圖1補充完整;③圖2中“差評”所占的百分比是;(2)若甲、乙兩名消費者在該網店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個給“好評”的概率.25.(10分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.26.(12分)已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點分別為D,E(Ⅰ)如圖①,求∠CED的大?。唬á颍┤鐖D②,當DE=BE時,求∠C的大?。?7.(12分)為了貫徹“減負增效”精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調查他們每天自主學習的時間.根據調查結果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據統(tǒng)計圖中的信息回答下列問題:(1)本次調查的學生人數是人;(2)圖2中α是度,并將圖1條形統(tǒng)計圖補充完整;(3)請估算該校九年級學生自主學習時間不少于1.5小時有人;(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:首先根據三角形的外角性質得到∠1+∠2=∠4,然后根據平行線的性質得到∠3=∠4求解.解:根據三角形的外角性質,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質以及三角形的外角性質,屬于基礎題,難度較?。?、C【解析】
根據中心對稱圖形的概念求解.【詳解】解:A選項是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B選項不是中心對稱圖形,故本選項錯誤;C選項為中心對稱圖形,故本選項正確;D選項不是中心對稱圖形,故本選項錯誤.故選C.【點睛】本題主要考查了中心對稱圖形的概念:關鍵是找到相關圖形的對稱中心,旋轉180度后與原圖重合.3、C【解析】如下圖,設⊙O與射線AC相切于點D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時⊙O與射線AC有唯一公共點點D,若⊙O再向右移動,則⊙O與射線AC就沒有公共點了,∴x的取值范圍是.故選C.4、D【解析】先將25100用科學記數法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D5、A【解析】
利用直接開平方法解方程.【詳解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故選A.【點睛】本題考查了解一元二次方程-直接開平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程.6、A【解析】
根據只有符號不同的兩數互為相反數,可直接判斷.【詳解】-2與2互為相反數,故正確;2與2相等,符號相同,故不是相反數;3與互為倒數,故不正確;3與3相同,故不是相反數.故選:A.【點睛】此題主要考查了相反數,關鍵是觀察特點是否只有符號不同,比較簡單.7、C【解析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.8、C【解析】試題分析:根據主視圖是從正面看得到的圖形,可得答案.解:從正面看第一層三個小正方形,第二層左邊一個小正方形,右邊一個小正方形.故選C.考點:簡單組合體的三視圖.9、C【解析】
由科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:6400000=6.4×106,故選C.點睛:此題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、B【解析】
根據反比例函數的性質判斷即可.【詳解】解:∵當x1<x2<0時,y1<y2,
∴在每個象限y隨x的增大而增大,
∴k<0,
故選:B.【點睛】本題考查了反比例函數的性質,解題的關鍵是熟練掌握反比例函數的性質.11、C【解析】
根據圓錐的底面周長等于側面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,
設圓錐的底面半徑是rcm,
則,
解得:.
即這個圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.
圓錐形冰淇淋紙?zhí)椎母邽椋?/p>
故選:C.【點睛】本題綜合考查有關扇形和圓錐的相關計算解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關系:圓錐的母線長等于側面展開圖的扇形半徑;圓錐的底面周長等于側面展開圖的扇形弧長正確對這兩個關系的記憶是解題的關鍵.12、D【解析】
根據“平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y),即關于原點的對稱點,橫縱坐標都變成相反數”解答.【詳解】解:根據關于原點對稱的點的坐標的特點,∴點A(-2,3)關于原點對稱的點的坐標是(2,-3),故選D.【點睛】本題主要考查點關于原點對稱的特征,解決本題的關鍵是要熟練掌握點關于原點對稱的特征.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、0【解析】分析:本題直接把點的坐標代入解析式求得之間的關系式,通過等量代換可得到的值.詳解:分別把A(?2,m)、B(5,n),代入反比例函數的圖象與一次函數y=ax+b得?2m=5n,?2a+b=m,5a+b=n,綜合可知5(5a+b)=?2(?2a+b),25a+5b=4a?2b,21a+7b=0,即3a+b=0.故答案為:0.點睛:屬于一次函數和反比例函數的綜合題,考查反比例函數與一次函數的交點問題,比較基礎.14、2【解析】【分析】接把點P(a,b)代入反比例函數y=即可得出結論.【詳解】∵點P(a,b)在反比例函數y=的圖象上,∴b=,∴ab=2,故答案為:2.【點睛】本題考查的是反比例函數圖象上點的坐標特點,熟知反比例函數圖象上各點的坐標一定適合此函數的解析式是解答此題的關鍵.15、1.【解析】解:因為眾數為3,可設a=3,b=3,c未知,平均數=(1+3+1+1+3+3+c)÷7=1,解得c=0,將這組數據按從小到大的順序排列:0、1、1、1、3、3、3,位于最中間的一個數是1,所以中位數是1,故答案為:1.點睛:本題為統(tǒng)計題,考查平均數、眾數與中位數的意義,中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會出錯.16、45°【解析】試題解析:如圖,連接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案為17、1【解析】
根據向量的三角形法則表示出CB,再根據BC、AD的關系解答.【詳解】如圖,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案為12a-【點睛】本題考查了平面向量,梯形,向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關鍵.18、【解析】
∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋轉的性質可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S陰影=S△AB′C′-S扇形BAB′=-.故答案為-.【點睛】錯因分析
中檔題.失分原因有2點:(1)不能準確地將陰影部分面積轉化為易求特殊圖形的面積;(2)不能根據矩形的邊求出α的值.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、10,1.【解析】試題分析:可以設矩形豬舍垂直于住房墻一邊長為m,可以得出平行于墻的一邊的長為m,由題意得出方程求出邊長的值.試題解析:設矩形豬舍垂直于住房墻一邊長為m,可以得出平行于墻的一邊的長為m,由題意得化簡,得,解得:當時,(舍去),當時,,答:所圍矩形豬舍的長為10m、寬為1m.考點:一元二次方程的應用題.20、(1),;(2)點C的坐標為或;(3)2.【解析】試題分析:(1)由點A的坐標利用反比例函數圖象上點的坐標特征即可求出a值,從而得出反比例函數解析式;由勾股定理得出OA的長度從而得出點B的坐標,由點A、B的坐標利用待定系數法即可求出直線AB的解析式;
(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,根據三角形的面積公式結合△ABC的面積是8,可得出關于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點C的坐標;
(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,根據反比例函數解析式以及平移的性質找出點E、F、M、N的坐標,根據EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據平移的性質即可得出C1平移至C2處所掃過的面積正好為S.試題解析:(1)∵點A(4,3)在反比例函數y=的圖象上,∴a=4×3=12,∴反比例函數解析式為y=;∵OA==1,OA=OB,點B在y軸負半軸上,∴點B(0,﹣1).把點A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數的解析式為y=2x﹣1.(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0),∴S△ABC=CD?(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故當△ABC的面積是8時,點C的坐標為(,0)或(,0).(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,如圖2所示.令y=中x=1,則y=12,∴E(1,12),;令y=中x=4,則y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四邊形EMNF為平行四邊形,∴S=EM?(yE﹣yF)=3×(12﹣3)=2.C1平移至C2處所掃過的面積正好為平行四邊形EMNF的面積.故答案為2.【點睛】運用了反比例函數圖象上點的坐標特征、待定系數法求函數解析式、三角形的面積以及平行四邊形的面積,解題的關鍵是:(1)利用待定系數法求出函數解析式;(2)找出關于m的含絕對值符號的一元一次方程;(3)求出平行四邊形EMNF的面積.本題屬于中檔題,難度不小,解決(3)時,巧妙的借助平行四邊的面積公式求出C1平移至C2處所掃過的面積,此處要注意數形結合的重要性.21、(1)100;(2)作圖見解析;(3)1.【解析】試題分析:(1)根據百分比=計算即可;(2)求出“打球”和“其他”的人數,畫出條形圖即可;(3)用樣本估計總體的思想解決問題即可.試題解析:(1)本次抽樣調查中的樣本容量=30÷30%=100,故答案為100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,條形圖如圖所示:(3)估計該校課余興趣愛好為“打球”的學生人數為2000×40%=1人.22、(1)(4,6);y=1x1﹣8x+6(1);(3)點P的坐標為(3,5)或().【解析】
(1)已知B(4,m)在直線y=x+1上,可求得m的值,拋物線圖象上的A、B兩點坐標,可將其代入拋物線的解析式中,通過聯立方程組即可求得待定系數的值.(1)要弄清PC的長,實際是直線AB與拋物線函數值的差.可設出P點橫坐標,根據直線AB和拋物線的解析式表示出P、C的縱坐標,進而得到關于PC與P點橫坐標的函數關系式,根據函數的性質即可求出PC的最大值.(3)根據頂點問題分情況討論,若點P為直角頂點,此圖形不存在,若點A為直角頂點,根據已知解析式與點坐標,可求出未知解析式,再聯立拋物線的解析式,可求得C點的坐標;若點C為直角頂點,可根據點的對稱性求出結論.【詳解】解:(1)∵B(4,m)在直線y=x+1上,∴m=4+1=6,∴B(4,6),故答案為(4,6);∵A(,),B(4,6)在拋物線y=ax1+bx+6上,∴,解得,∴拋物線的解析式為y=1x1﹣8x+6;(1)設動點P的坐標為(n,n+1),則C點的坐標為(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴當n=時,線段PC最大且為.(3)∵△PAC為直角三角形,i)若點P為直角頂點,則∠APC=90°.由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;ii)若點A為直角頂點,則∠PAC=90°.如圖1,過點A(,)作AN⊥x軸于點N,則ON=,AN=.過點A作AM⊥直線AB,交x軸于點M,則由題意易知,△AMN為等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).設直線AM的解析式為:y=kx+b,則:,解得,∴直線AM的解析式為:y=﹣x+3①又拋物線的解析式為:y=1x1﹣8x+6②聯立①②式,解得:或(與點A重合,舍去),∴C(3,0),即點C、M點重合.當x=3時,y=x+1=5,∴P1(3,5);iii)若點C為直角頂點,則∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴拋物線的對稱軸為直線x=1.如圖1,作點A(,)關于對稱軸x=1的對稱點C,則點C在拋物線上,且C(,).當x=時,y=x+1=.∴P1(,).∵點P1(3,5)、P1(,)均在線段AB上,∴綜上所述,△PAC為直角三角形時,點P的坐標為(3,5)或(,).【點睛】本題考查了二次函數的綜合題,解題的關鍵是熟練的掌握二次函數的應用.23、甲、乙獲勝的機會不相同.【解析】試題分析:先畫出樹狀圖列舉出所有情況,再分別算出甲、乙獲勝的概率,比較即可判斷.∴P∴甲、乙獲勝的機會不相同.考點:可能性大小的判斷點評:本題屬于基礎應用題,只需學生熟練掌握概率的求法,即可完成.24、(1)①150;②作圖見解析;③13.3%;(2).【解析】
(1)①用“中評”、“差評”的人數除以二者的百分比之和即可得總人數;②用總人數減去“中評”、“差評”的人數可得“好評”的人數,補全條形圖即可;③根據“差評”的人數÷總人數×100%即可得“差評”所占的百分比;(2)可通過列表表示出甲、乙對商品評價的所有可能結果數,根據概率公式即可計算出兩人中至少有一個給“好評”的概率.【詳解】①小明統(tǒng)計的評價一共有:(40+20)÷(1-60%=150(個);②“好評”一共有150×60%=90(個),補全條形圖如圖1:③圖2中“差評”所占的百分比是:×100%=13.3%;(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9種等可能結果,其中至少有一個給“好評”的有5種,∴兩人中至少有一個給“好評”的概率是.考點:扇形統(tǒng)計圖;條形統(tǒng)計圖;列表法與樹狀圖法.25、(1)3+【解析】
(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設AE=x,則ME=BM=2x,AM=3x,根據AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.
(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 在職知識產權歸屬合同范本年
- 建設工程預拌砂漿采購合同
- 貿易采購及貨物配送合同
- 衛(wèi)生間裝修合同書年
- 大件貨物運輸合同
- 2025外墻粉刷工程承包合同簡易模板
- 房屋貸款合同范本
- 某地面工程建設工程施工合同1
- 2025廣告服務代理服務合同范本
- 2025額度抵押借款合同
- 四川省自貢市2024-2025學年上學期八年級英語期末試題(含答案無聽力音頻及原文)
- 2025-2030年中國汽車防滑鏈行業(yè)競爭格局展望及投資策略分析報告新版
- 2025年上海用人單位勞動合同(4篇)
- 新疆烏魯木齊地區(qū)2025年高三年級第一次質量監(jiān)測生物學試卷(含答案)
- 衛(wèi)生服務個人基本信息表
- 高中英語北師大版必修第一冊全冊單詞表(按單元編排)
- 苗圃建設項目施工組織設計范本
- 廣東省湛江市廉江市2023-2024學年八年級上學期期末考試數學試卷(含答案)
- 學校食品安全舉報投訴處理制度
- 通用電子嘉賓禮薄
- 污水處理廠設備的操作規(guī)程(完整版)
評論
0/150
提交評論