2024屆河北省衡水市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第1頁(yè)
2024屆河北省衡水市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第2頁(yè)
2024屆河北省衡水市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第3頁(yè)
2024屆河北省衡水市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第4頁(yè)
2024屆河北省衡水市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆河北省衡水市重點(diǎn)中學(xué)高考數(shù)學(xué)三模試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是邊長(zhǎng)為1的等邊三角形,點(diǎn),分別是邊,的中點(diǎn),連接并延長(zhǎng)到點(diǎn),使得,則的值為()A. B. C. D.2.已知復(fù)數(shù)滿(mǎn)足,則的值為()A. B. C. D.23.已知正四面體的棱長(zhǎng)為,是該正四面體外接球球心,且,,則()A. B.C. D.4.小王因上班繁忙,來(lái)不及做午飯,所以叫了外賣(mài).假設(shè)小王和外賣(mài)小哥都在12:00~12:10之間隨機(jī)到達(dá)小王所居住的樓下,則小王在樓下等候外賣(mài)小哥的時(shí)間不超過(guò)5分鐘的概率是()A. B. C. D.5.已知數(shù)列滿(mǎn)足,(),則數(shù)列的通項(xiàng)公式()A. B. C. D.6.已知拋物線(xiàn)C:,過(guò)焦點(diǎn)F的直線(xiàn)l與拋物線(xiàn)C交于A,B兩點(diǎn)(A在x軸上方),且滿(mǎn)足,則直線(xiàn)l的斜率為()A.1 B.C.2 D.37.已知,則的值構(gòu)成的集合是()A. B. C. D.8.如圖,圓的半徑為,,是圓上的定點(diǎn),,是圓上的動(dòng)點(diǎn),點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)為,角的始邊為射線(xiàn),終邊為射線(xiàn),將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.9.一個(gè)袋中放有大小、形狀均相同的小球,其中紅球1個(gè)、黑球2個(gè),現(xiàn)隨機(jī)等可能取出小球,當(dāng)有放回依次取出兩個(gè)小球時(shí),記取出的紅球數(shù)為;當(dāng)無(wú)放回依次取出兩個(gè)小球時(shí),記取出的紅球數(shù)為,則()A., B.,C., D.,10.復(fù)數(shù)()A. B. C.0 D.11.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.12.已知三棱柱的所有棱長(zhǎng)均相等,側(cè)棱平面,過(guò)作平面與平行,設(shè)平面與平面的交線(xiàn)為,記直線(xiàn)與直線(xiàn)所成銳角分別為,則這三個(gè)角的大小關(guān)系為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是______.14.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線(xiàn)BC1與AC所成角的余弦值為_(kāi)____.15.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大值為時(shí),三棱錐的外接球的表面積為_(kāi)_____.16.如圖,四面體的一條棱長(zhǎng)為,其余棱長(zhǎng)均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為_(kāi)___.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線(xiàn),曲線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線(xiàn)、的極坐標(biāo)方程;(2)在極坐標(biāo)系中,射線(xiàn)與曲線(xiàn),分別交于、兩點(diǎn)(異于極點(diǎn)),定點(diǎn),求的面積18.(12分)某健身館為響應(yīng)十九屆四中全會(huì)提出的“聚焦增強(qiáng)人民體質(zhì),健全促進(jìn)全民健身制度性舉措”,提高廣大市民對(duì)全民健身運(yùn)動(dòng)的參與程度,推出了健身促銷(xiāo)活動(dòng),收費(fèi)標(biāo)準(zhǔn)如下:健身時(shí)間不超過(guò)1小時(shí)免費(fèi),超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為20元(不足l小時(shí)的部分按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人各自獨(dú)立地來(lái)該健身館健身,設(shè)甲、乙健身時(shí)間不超過(guò)1小時(shí)的概率分別為,,健身時(shí)間1小時(shí)以上且不超過(guò)2小時(shí)的概率分別為,,且兩人健身時(shí)間都不會(huì)超過(guò)3小時(shí).(1)設(shè)甲、乙兩人所付的健身費(fèi)用之和為隨機(jī)變量(單位:元),求的分布列與數(shù)學(xué)期望;(2)此促銷(xiāo)活動(dòng)推出后,健身館預(yù)計(jì)每天約有300人來(lái)參與健身活動(dòng),以這兩人健身費(fèi)用之和的數(shù)學(xué)期望為依據(jù),預(yù)測(cè)此次促銷(xiāo)活動(dòng)后健身館每天的營(yíng)業(yè)額.19.(12分)已知中,角所對(duì)邊的長(zhǎng)分別為,且(1)求角的大?。唬?)求的值.20.(12分)在中,角、、所對(duì)的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.21.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點(diǎn),且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.22.(10分)追求人類(lèi)與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:空氣質(zhì)量?jī)?yōu)良輕度污染中度污染重度污染嚴(yán)重污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計(jì)該企業(yè)一個(gè)月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

設(shè),,作為一個(gè)基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、C【解析】

由復(fù)數(shù)的除法運(yùn)算整理已知求得復(fù)數(shù)z,進(jìn)而求得其模.【詳解】因?yàn)?,所以故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算與求復(fù)數(shù)的模,屬于基礎(chǔ)題.3、A【解析】

如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因?yàn)闉橹匦模虼耍瑒t,因此,因此,則,故選A.【點(diǎn)睛】本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.4、C【解析】

設(shè)出兩人到達(dá)小王的時(shí)間,根據(jù)題意列出不等式組,利用幾何概型計(jì)算公式進(jìn)行求解即可.【詳解】設(shè)小王和外賣(mài)小哥到達(dá)小王所居住的樓下的時(shí)間分別為,以12:00點(diǎn)為開(kāi)始算起,則有,在平面直角坐標(biāo)系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣(mài)小哥的時(shí)間不超過(guò)5分鐘的概率為:.故選:C【點(diǎn)睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學(xué)運(yùn)算能力.5、A【解析】

利用數(shù)列的遞推關(guān)系式,通過(guò)累加法求解即可.【詳解】數(shù)列滿(mǎn)足:,,可得以上各式相加可得:,故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列累加法以及通項(xiàng)公式的求法,考查計(jì)算能力.6、B【解析】

設(shè)直線(xiàn)的方程為代入拋物線(xiàn)方程,利用韋達(dá)定理可得,,由可知所以可得代入化簡(jiǎn)求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線(xiàn)l的斜率存在且不為0,設(shè)為,則直線(xiàn)l的方程為.與拋物線(xiàn)方程聯(lián)立得,所以,.因?yàn)?,所以,得,所以,即,,所?故選:B.【點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,考查韋達(dá)定理及向量的坐標(biāo)之間的關(guān)系,考查計(jì)算能力,屬于中檔題.7、C【解析】

對(duì)分奇數(shù)、偶數(shù)進(jìn)行討論,利用誘導(dǎo)公式化簡(jiǎn)可得.【詳解】為偶數(shù)時(shí),;為奇數(shù)時(shí),,則的值構(gòu)成的集合為.【點(diǎn)睛】本題考查三角式的化簡(jiǎn),誘導(dǎo)公式,分類(lèi)討論,屬于基本題.8、B【解析】

根據(jù)圖象分析變化過(guò)程中在關(guān)鍵位置及部分區(qū)域,即可排除錯(cuò)誤選項(xiàng),得到函數(shù)圖象,即可求解.【詳解】由題意,當(dāng)時(shí),P與A重合,則與B重合,所以,故排除C,D選項(xiàng);當(dāng)時(shí),,由圖象可知選B.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達(dá)式是解題的關(guān)鍵,屬于中檔題.9、B【解析】

分別求出兩個(gè)隨機(jī)變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點(diǎn)睛】離散型隨機(jī)變量的分布列的計(jì)算,應(yīng)先確定隨機(jī)變量所有可能的取值,再利用排列組合知識(shí)求出隨機(jī)變量每一種取值情況的概率,然后利用公式計(jì)算期望和方差,注意在取球模型中摸出的球有放回與無(wú)放回的區(qū)別.10、C【解析】略11、D【解析】

結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.12、B【解析】

利用圖形作出空間中兩直線(xiàn)所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點(diǎn),為的中點(diǎn),由圖可知過(guò)且與平行的平面為平面,所以直線(xiàn)即為直線(xiàn),由題易知,的補(bǔ)角,分別為,設(shè)三棱柱的棱長(zhǎng)為2,在中,,;在中,,;在中,,,.故選:B【點(diǎn)睛】本題主要考查了空間中兩直線(xiàn)所成角的計(jì)算,考查了學(xué)生的作圖,用圖能力,體現(xiàn)了學(xué)生直觀(guān)想象的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

該程序的功能為利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.【詳解】模擬程序的運(yùn)行,可得:,,不滿(mǎn)足條件,執(zhí)行循環(huán)體,,,不滿(mǎn)足條件,執(zhí)行循環(huán)體,,,不滿(mǎn)足條件,執(zhí)行循環(huán)體,,,不滿(mǎn)足條件,執(zhí)行循環(huán)體,,,此時(shí)滿(mǎn)足條件,退出循環(huán),輸出的值為1.故答案為:1.【點(diǎn)睛】本題考查程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,以便得出正確的結(jié)論,屬于基礎(chǔ)題.14、【解析】

將平移到和相交的位置,解三角形求得線(xiàn)線(xiàn)角的余弦值.【詳解】過(guò)作,過(guò)作,畫(huà)出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線(xiàn)線(xiàn)角或其補(bǔ)角.在三角形中,,故.【點(diǎn)睛】本小題主要考查空間兩條直線(xiàn)所成角的余弦值的計(jì)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.15、【解析】

根據(jù)題意作出圖象,利用三垂線(xiàn)定理找出二面角的平面角,再設(shè)出的長(zhǎng),即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長(zhǎng)度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過(guò)點(diǎn)作面,垂足為,過(guò)點(diǎn)作交于點(diǎn),連接.則為二面角的平面角的補(bǔ)角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點(diǎn).設(shè),.∴.故三棱錐的體積為當(dāng)且僅當(dāng)時(shí),,即.∴三點(diǎn)共線(xiàn).設(shè)三棱錐的外接球的球心為,半徑為.過(guò)點(diǎn)作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點(diǎn)睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運(yùn)用,基本不等式的應(yīng)用,以及球的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的直觀(guān)想象能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.16、(或?qū)懗?【解析】試題分析:設(shè),取中點(diǎn)則,因此,所以,因?yàn)樵趩握{(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點(diǎn):函數(shù)最值,函數(shù)單調(diào)區(qū)間三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2).【解析】

(1)先把參數(shù)方程化成普通方程,再利用極坐標(biāo)的公式把普通方程化成極坐標(biāo)方程;(2)先利用極坐標(biāo)求出弦長(zhǎng),再求高,最后求的面積.【詳解】(1)曲線(xiàn)的極坐標(biāo)方程為:,因?yàn)榍€(xiàn)的普通方程為:,曲線(xiàn)的極坐標(biāo)方程為;(2)由(1)得:點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,,點(diǎn)到射線(xiàn)的距離為的面積為.【點(diǎn)睛】本題考查普通方程、參數(shù)方程與極坐標(biāo)方程之間的互化,同時(shí)也考查了利用極坐標(biāo)方程求解面積問(wèn)題,考查計(jì)算能力,屬于中等題.18、(1)見(jiàn)解析,40元(2)6000元【解析】

(1)甲、乙兩人所付的健身費(fèi)用都是0元、20元、40元三種情況,因此甲、乙兩人所付的健身費(fèi)用之和共有9種情況,分情況計(jì)算即可(2)根據(jù)(1)結(jié)果求均值.【詳解】解:(1)由題設(shè)知可能取值為0,20,40,60,80,則;;;;.故的分布列為:020406080所以數(shù)學(xué)期望(元)(2)此次促銷(xiāo)活動(dòng)后健身館每天的營(yíng)業(yè)額預(yù)計(jì)為:(元)【點(diǎn)睛】考查離散型隨機(jī)變量的分布列及其期望的求法,中檔題.19、(1);(2).【解析】

(1)正弦定理的邊角轉(zhuǎn)換,以及兩角和的正弦公式展開(kāi),特殊角的余弦值即可求出答案;(2)構(gòu)造齊次式,利用正弦定理的邊角轉(zhuǎn)換,得到,結(jié)合余弦定理得到【詳解】解:(1)由已知,得又∵∴∴,因?yàn)榈谩摺?(2)∵又由余弦定理,得∴【點(diǎn)睛】1.考查學(xué)生對(duì)正余弦定理的綜合應(yīng)用;2.能處理基本的邊角轉(zhuǎn)換問(wèn)題;3.能利用特殊的三角函數(shù)值推特殊角,屬于中檔題20、(1);(2).【解析】

(1)由角的度數(shù)成等差數(shù)列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當(dāng),即時(shí),.【方法點(diǎn)睛】解三角形問(wèn)題基本思想方法:從條件出發(fā),利用正弦定理(或余弦定理)進(jìn)行代換、轉(zhuǎn)化.逐步化為純粹的邊與邊或角與角的關(guān)系,即考慮如下兩條途徑:①統(tǒng)一成角進(jìn)行判斷,常用正弦定理及三角恒等變換;②統(tǒng)一成邊進(jìn)行判斷,常用余弦定理、面積公式等.21、(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析;(Ⅲ).【解析】

(I)取的中點(diǎn),連接,通過(guò)證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點(diǎn),易得面,利用棱錐的體積公式,計(jì)算出棱錐的體積.【詳解】(Ⅰ)取的中點(diǎn),連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點(diǎn),所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點(diǎn),即

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論