化工熱力學(xué)授課教案_第1頁(yè)
化工熱力學(xué)授課教案_第2頁(yè)
化工熱力學(xué)授課教案_第3頁(yè)
化工熱力學(xué)授課教案_第4頁(yè)
化工熱力學(xué)授課教案_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Chapter3VolumetricPropertiesofPureFluidsContents:Introduction3.1PVTbehaviorofpuresubstances3.2VirialEquationsofstate3.3theidealgas3.4ApplicationoftheVirialEquations3.5Cubicequationofstate3.6GeneralizedCorrelationsforGasesIntroductionWhytostudythischapter?VeryimportantforindustryPressureVolumetemperatureTheycanbeusedtocalculatevolumetricpropertiesVeryeasytobemeasuredVeryimportantforindustryPressureVolumetemperatureTheycanbeusedtocalculatevolumetricpropertiesVeryeasytobemeasuredWehopeHowcanweobtaintheseinformations?PVTTworoutes:PVTmeasuringdirectlycalculatingwithotherparameterswhichcanbemeasureddirectly3.1PVTbehaviorofpuresubstancesBymeasuringthevaporpressure,volumeandtemperatureofapuresubstanceswhendifferentphasesachieveequilibrium,wecandrawthecurveofP-V-TV=constantV=constantPTdiagramPVdiagramT=constantTVdiagramP=constantPTLiquidSolidCriticalpointSublimationcurvePTLiquidSolidCriticalpointSublimationcurveFusioncurveVaporizationcurveFluidC12Forexample:PTdiagramofwaterwhenV=constantTwopoints:1)C—thecriticalpoint PC—thecriticalpressureTC—thecriticaltemperatureCpT2PCCpT2temperatureatwhichapurechemicalspeciescanexistinvapor-liquidequilibrium2)2—thetriplepointwherethethreephasescoexistinequilibriumAccordingtothephaserule,F=1-3+2=0DegreesoffreedominvariantpointDegreesoffreedomAccordingtotheSublimationcurvephaseruleAccordingtotheSublimationcurvephaseruleF=1-2+2=1FusioncurveVaporizationcurveSublimationcurveFourregions:SolidregionAccordingtothephaserule,F=1-1+2=2VaporregionAccordingtothephaserule,F=1-1+2=2liquidregionFluidregion3.1.2PV(1)showingonlyliquid,gasregionswhenV=constantVaporVaporLiquidVPSaturatedliquidliquid/vaporSaturatedvaporTT1VaporVCTTCPCliquid/vaporLiquidPCriticalpointSaturatedvaporcurveSaturatedliquidcurveVT>TC>T1>T2>T3T2T3(2)showingsolid,liquid,gasregionswhenV=constantPPCVCliquid/vaporVaporSolid/liquidsolid/vaporSaturatedvaporcurvePVLiquidCriticalpointsolidSaturatedliquidcurveSolidcurveSublimationcurveThetriplephasecurvePVSS/LPVSS/LLCVV/SV/LFivecurves:saturatedliquidcurvesaturatedvaporcurvesolidcurvesublimationcurveTriplephasecurveSevenregions:solidregionliquidregionvaporregionsolid/liquidregionliquid/vaporregionsolid/vaporregionsup-criticalfluidregionvaporSaturatedvaporcurveSaturatedliquidcurveT℃vaporSaturatedvaporcurveSaturatedliquidcurveT℃0.003155vm3/kgP=22.09MPaP=15MPaP=1MPaThinking(3-1)Onepoint:thecriticalpointTwocurves:saturatedliquidcurvesaturatedvaporcurveFourregions:liquidregionvaporregionliquid/vaporregionsup-criticalfluidregionThinking(3-2):DiscribeprocessbelowinpTorpVdiagram.Liquefyingsuperheatedvapor(p1,T1)whenporT=constantTT1T2P1pTLiquidVaporSolidCP1pVTCCT2T1Thinking(3-3)DiscribeprocessbelowinpTorpVdiagramHeatingsuperheatedvaporvapor(p1,T1)whenP=constantTT2P1pTLiquidVaporSolidCT1P1pVTCCT2T1Thinking(3-4)DiscribeprocessbelowinpTorpVdiagramHeatingsuperheatedvaporvapor(p1,T1)whenV=constantPP1T2pTLiquidVaporSolidCT1P1pVTCCT2T13.1.4P-V-TdiagramofpuresubstanceSolidSolidregionSolid/liquidLiquidregionLiquid/vaporVaporregionCriticalpointTriplephasecurveSolid/vaporThinking(3-5)TheprojectionofPVTdiagramPPPVdiagramPTdiagramBCALABPTVCSVVLPTABCSGL-GS-GS-LS/LV/LV/SPVTdiagram3.1.5CriticalBehaviorConstant-volumecurvesinthesingle-phaseregionsVVLPTABCSGL-GS-GS-LpTLiquidVaporSolidCP1Thechangethatoccurwhenapuresubstanceisheatedinasealedtubeofconstantvolume3)mixtureofliquidandvaporJK2)3)mixtureofliquidandvaporJK2)SubheatedvaporG1)SubcooledliquidEpTCVpTCVT1TCCT2pFEEF(J,K)HGNQKJNQGHFortheregionswhereasinglephaseexistsIsothermalcompressibilityIsothermalcompressibilityVolumeexpansivityForliquidThinking(3-6)featuresofκandβforliquid?3.2VirialEquationsofstate3.2.1IntroductiontoEOSForapuresubstanceFmax=?Fmax=C-P+2=1-1+2=2thatis:Forapuresubstance,fixingtwoofitspropertiesfixesalltheothers,andthusdeterminesitsthermonadymicstateWecanwrite:TheequationofstateTheequationofstate(EOS)ValueofEOSEOS的價(jià)值:1)精確地代表相當(dāng)廣泛范圍內(nèi)的PVT數(shù)據(jù),大大減少實(shí)驗(yàn)測(cè)定工作量。2)可直接計(jì)算不做實(shí)驗(yàn)測(cè)定的其它熱力學(xué)性質(zhì)3)進(jìn)行相平衡的計(jì)算但其通用性差,要在廣泛的氣體密度范圍內(nèi)即用于極性物質(zhì),又用于非極性物質(zhì),又要精度,很難做到。ThenecessaryconditionsofEOS1)Accordingwithcriticalcondition2)P→0(V→∞),accordingwiththelawofidealgasT1pT1pTCCT2VThePVproductforagasorvapormaybeexpressedasafunctionofPbyapowerseriesThePVproductforagasorvapormaybeexpressedasafunctionofPbyapowerseriesLetWherea,B′,C′,etc.,areconstantsforagiventemperatureandagivenchemicalspecies3.2.3TwoformsoftheVirialEquationCompressibilityfactorororB,B′issecondvirialcoefficientsC,C′isthirdvirialcoefficients,etc.ForagivengasthevirialcoefficientsarefunctionsoftemperatureonlyTheVirialequationistheonlyonehavingafirmbasisintheoryFortheexpansionin1/VthetermB/V——interactionsbetweenparisofmoleculesthetermC/V2——three-bodyinteractions,etc.Sincetwo-bodyinteractionsaremanytimesmorecommonthanthree-bodyinteractions;three-bodyinteractionsaremanytimesmorenumerousthanfour-bodyinteractions,etc.,thecontributionstoZofthesuccessivelyhigher-orderedtermsdecreaserapidly.3.4ApplicationoftheVirialEquationstheVirialEquationsTheVirialEquationsareinfiniteseries.TheVirialEquationsareinfiniteseries.Forengineeringpurposes,theirconvergenceshouldbeveryrapid.Thinking(3-6)Atlowpressure,theisothermsarenearlystraightlines,andapproximatetotangentatP→Atlowpressure,theisothermsarenearlystraightlines,andapproximatetotangentatP→0ThatistangentcanreplacetheisothermsatlowpressureThetangentatP→0isForexample:Compressibility-factorgraphformethaneApplicationrange1)ThevirialequationcanbeusedtorepresenttheP-V-Tbehaviorofvapor,butnotsuitabletoliquid2)WhenP<1.5Mpa,twoequationsasfollowedcanbeusedforengineeringpurpose3)When1.5Mpa<P<5Mpa,thevirialequationtruncatedtothreetermsoftenprovidesexcellentresults4)Athighpressure,lowtemperatureandhighrequestofprecision,thevirialequationtruncatedtomoretermscanprovidesexcellentresults應(yīng)用范圍與條件維里方程是一個(gè)理論狀態(tài)方程,其計(jì)算范圍應(yīng)該是很寬闊的,但由于維里系數(shù)的缺乏,使維里方程的普遍性和通用性受到了限制。在使用維里方程時(shí)應(yīng)注意:A.用于氣相PVT性質(zhì)的計(jì)算,對(duì)液相不適用;B.P<1.5Mpa時(shí),用兩截項(xiàng)維里方程計(jì)算,可滿足工程要求;C.1.5Mpa<P<5Mpa時(shí),用三截項(xiàng)維里方程計(jì)算;D.高壓,精確度要求高時(shí),可根據(jù)情況,多取幾項(xiàng)。目前采用維里方程計(jì)算氣體PVT性質(zhì)時(shí),一般最多采取三項(xiàng)。這是由于多于三項(xiàng)的維里方程中的常數(shù)奇缺,所以多于三項(xiàng)的維里方程一般不大采用。Example3.7Solution3.7(1)ForanidealgasZ=1Z=1(2)SolvingvirialequationtrunctedtwotermsforVgivesZ=0.9014Z=0.9014(3)SolvingvirialequationtrunctedthreetermsforVTofacilitateiteration,writeequationaboveas:V0=3934cm3mol-1V1=3539cm3mol-1V2=3495cm3mol-1……V=3488cm3mol-1[when(Vi+1-Vi)<ε]Z=0.88663.5CubicequationofstateCubicequationofstatesarethepolynomialequationsthatarecubicinmolarvolumeIncludemainly:(1)VanDerWaalsequation(2)R-K(Redlich-Kwong)equation(3)S-R-K(Soave-Ridlich-Kwang)equation(4)P-R(Peng-Robinson)equation(5)P-T(Patel-Teja)equation3.5.1ThevanderWaalsEquationofStateThefirstpracticalcubicequationofstatewasproposedbyJ.D.vanderWaalsin1873Wherea,bareallconstanta/V2:壓力校正項(xiàng)b:體積校正項(xiàng)Whena=b=03.5.2AVDWEquationofStateGenericCubicEquationofStateVDWEquationofStateGenericCubicEquationofStateGenericCubicEquationofStatePeng-Robinson(PR)equationPeng-Robinson(PR)equationRedlich-Kwong(RK)equationSoave-Redlich-Kwong(SRK)equationPatel-Teja(PT)equation3.5.3DeterminationofEquation-stateParametersTheconstantsinanequationofstateforaparticularsubstancemaybeevaluatedbytworoutesAfittoavailablePVTdataThecriticalconstantsForcubicequationofstate,suitableestimatesareusuallyfoundfromvaluesforthecriticalconstantsWherecrWherecrdenotesthecriticalpoint1)VanderWaalsequationMethodoneMethodoneAtthecriticalpointMethodtwoAtthecriticalpointTerm-by-termcomparison2)GenericCubicequationαα(Tr)isadimensionlessfunctionΨandΩarepurenumbers,independentofsubstanceanddeterminedforaparticularequationofstatefromthevaluesassignedtoσandε3)Redlich-Kwong(RK)equationRK方程能較成功地用于氣相P-V-T的計(jì)算,但液相的效果較差,也不能預(yù)測(cè)純流體的蒸汽壓(即汽液平衡)。DefineAandBRKEOScanbewrittenasthefunctionofcompressibilityfactor(壓縮因子Z的三次方表達(dá)式)Tofacilitateiteration,writeRKEOSaboveas:4)Soave-Redlich-Kwong(SRK)equation與RK方程相比,SRK方程大大提高了表達(dá)純物質(zhì)汽液平衡的能力,使之能用于混合物的汽液平衡計(jì)算,故在工業(yè)上獲得了廣泛的應(yīng)用。DefineAandBSRKEOScanbewrittenasthefunctionofcompressibilityfactor(壓縮因子Z的三次方表達(dá)式)Tofacilitateiteration,writeSRKEOSaboveas:5)Peng-Robinson(PR)equationPR方程預(yù)測(cè)液體摩爾體積的準(zhǔn)確度較SRK有明顯的改善。DefineAandBPREOScanbewrittenasthefunctionofcompressibilityfactor(壓縮因子Z的三次方表達(dá)式)Tofacilitateiteration,writePREOSaboveas:3.5.4EquationofStateofVariousConstants(多常數(shù)狀態(tài)方程)equationofstateofvariousconstantsequationofstateofvariousconstantsMartin-HouequationVirialequationBenedict-Webb-RubinequationMartin-Houequation該方程是1955年Martin教授和我國(guó)學(xué)者候虞鈞提出的。為了提高該方程在高密度區(qū)的精確度,Martin于1959年對(duì)該方程進(jìn)一步改進(jìn),1981年候虞鈞教授等又將該方程的適用范圍擴(kuò)展到液相區(qū),改進(jìn)后的方程稱為MH-81型方程whereThegenericequationofMartin-Houwhere方程參數(shù):皆為方程的常數(shù),可從純物質(zhì)臨界參數(shù)及飽和蒸氣壓曲線上的一點(diǎn)數(shù)據(jù)求得。其中,MH-55方程中,常數(shù),MH-81型方程中,常數(shù)。方程使用情況:MH-81型狀態(tài)方程能同時(shí)用于汽、液兩相,方程準(zhǔn)確度高,適用范圍廣,能用于包括非極性至強(qiáng)極性的物質(zhì)(如NH3、H2O),對(duì)量子氣體H2、He等也可應(yīng)用,在合成氨等工程設(shè)計(jì)中得到廣泛使用。Benedict-Webb-RubinEquationWhereA0,B0,C0,a,b,c,αandγareallconstantforagivenfluid第一個(gè)能在高密度區(qū)表示流體P-V-T和計(jì)算汽液平衡的多常數(shù)方程方程參數(shù):為密度等8個(gè)常數(shù),由純物質(zhì)的p-V-T數(shù)據(jù)和蒸氣壓數(shù)據(jù)確定。目前已具有參數(shù)的物質(zhì)有三四十個(gè),其中絕大多數(shù)是烴類。方程使用情況:在計(jì)算和關(guān)聯(lián)輕烴及其混合物的液體和氣體熱力學(xué)性質(zhì)時(shí)極有價(jià)值。在烴類熱力學(xué)性質(zhì)計(jì)算中,比臨界密度大1.8~2.0倍的高壓條件下,BWR方程計(jì)算的平均誤差為0.3%左右,但該方程不能用于含水體系。以提高BWR方程在低溫區(qū)域的計(jì)算精度為目的,Starling等人提出了11個(gè)常數(shù)的Starling式(或稱BWRS式)。該方程的應(yīng)用范圍,對(duì)比溫度可以低到0.3,對(duì)輕烴氣體,CO2、H2S和N2的廣度性質(zhì)計(jì)算,精度較高。例:試用RK、SRK和PR方程分別計(jì)算異丁烷在300K,3.704MPa時(shí)摩爾體積。其實(shí)驗(yàn)值為V=6.081m3/kmol。解從附錄二查得異丁烷的臨界參數(shù)為Tc=126.2KPc=3.648MPaω=0.176(1)RK方程(2)SRK方程3.5.6TheoremofCorrespondingStateDefinitionofreducedtemperatureandreducedPressure1)Thetwo-parametertheoremofcorrespondingstatesAllfluids,whencomparedatthesamereducedtemperatureandreducedpressure,haveapproximatelythesamecompressibilityfactor,andalldeviatefromideal-gasbehaviortoaboutthesamedegree.Thinking(3-7)TransfervdWequationtotwo-parameterequationAttention!Forthesimplefluids,suchasargon,kryptonandxenon,thetwo-parametertheoremofcorrespondingstatesarenearlyexact.Formorecomplexfluids,deviationareobserved.Formorecomplexfluids,introductionofathirdcorresponding-stateparametercanimprovtheresults.themostpopularsuchparameteristheacentricfactorvdW方程的對(duì)比形式vdW方程的對(duì)比形式代入對(duì)比參數(shù)無因次化處理ThelogarithmofthereducedvaporpressureofapurefluidisapproximatelylinearinthereciprocalofabsolutetemperatureThisisobservednottobetrue,eachfluidhasitsownS-1.0-1.01/Tr1/Tr=1/0.7=1.43Slope≈-3.2(n-Octane)Slope≈-2.3(ArKrXe)logprsatPitzernotedthatallvapor-pressuredataforthesimplefluids(Ar,Kr,Xe)(SF)lieonthesamelinewhenplottedaslgprsatvs.1/Tr,andthatthelinepassesthroughprsat=-0.1atTr=0.7,TheacentricfactorisdefinedasthisdifferenceevaluatedatTr=0.73)Thethree-parametertheoremofcorrespondingstatesAllfluidshavingthesamevalueofω,whencomparedatthesameTrandPr,haveaboutthesamevalueofZ,andalldeviatefromideal-gasbehaviortoaboutthesamedegree.3.6GeneralizedCorrelationsforGases3.6.1PitzercorrelationforthecompressibilityFactorwhereZ0andZ1arefunctionsofbothTrandPr.Z0—thecompressibility-factorofsimplefluidZ1—thecompressibility-factorofreferencefluidHowcanweobtainZ0,Z1?Z0?Forthesimplefluidsω=000.200.20.40.60.81.01.20.050.10.20.51.02.05.010.0Tr=0.70.91.01.21.54.0Two-phaseregionCompressed-liquid(Tr<1.0)prZ0Z0=F0(Tr,Pr)TheLee/KeslercorrelationTablesandfigureswhichpresentvaluesofZ0andZ1asfunctionsofTrandprZ1?Fornon-simplefluidsAsimplelinearrelationbetweenZandωifvaluesofTr,Praregiven,Z0canbeobtainedAsimplelinearrelationbetweenZandωTheLee/KeslercorrelationTablesandfigureswhichpresentvaluesofZ0andZ1asfunctionsofTrTheLee/KeslercorrelationTablesandfigureswhichpresentvaluesofZ0andZ1asfunctionsofTrandprZ1=F1(Tr,Pr)例2-3計(jì)算一個(gè)125cm3的剛性容器,在50℃和18.745MPa的條件下能貯存甲烷多少克(實(shí)驗(yàn)值是17克解:查出Tc=190.58K,Pc=4.604MPa,ω=0.011Z0?Z1?查表及內(nèi)插:TrPr3.0005.0004.0711.600.84100.86170.85211.700.88090.89840.8860查表及內(nèi)插:TrPr3.0005.0004.0711.600.23810.26310.25151.700.23050.27880.2564使用情況:Pitzer關(guān)系式對(duì)于非極性或弱極性的氣體能夠提供可靠的結(jié)果,誤差,應(yīng)用于極性氣體時(shí),誤差要增大到5%~10%,而對(duì)于締合氣體和量子氣體,使用時(shí)應(yīng)當(dāng)注意。3.6.2PitzerCorrelationsfortheSecondVirialCoefficientSubstitutionT=Tr·Tc,P=Pr·Pcintothesimplestformofthevirialequation:Thus,Pitzerandcoworkersproposedasecondcorrelation,whichyieldsvaluesforBPc/RTc:ThereducedsecondvirialcoefficentThereducedsecondvirialcoefficentSubstitutionT=Tr·Tc,P=Pr·Pcintothesimplestformofthevirialequation:Thus,Pitzerandcoworkersproposedasecondcorrelation,whichyieldsvaluesforBPc/RTc:Secondvirialcoefficientsarefunctionsoftemperatureonly,andsimilarlyB0andB1arefunctionsofreducedtemperatureonly.Theyarewellrepresentedbythefollowingequations:Attention!01234501234512346780普遍化維利系數(shù)使用區(qū)普遍化壓縮因子使用區(qū)Trpr3.6.3Theconditionunderwhichtheideal-gasequationcanbeusedasareasonableapproximationtorealityTheideal-gasequationisareasonab

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論