版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高一數(shù)學(xué)人教版知識點高一數(shù)學(xué)人教版知識點全文共1頁,當(dāng)前為第1頁。高一數(shù)學(xué)人教版知識點高一數(shù)學(xué)人教版知識點全文共1頁,當(dāng)前為第1頁。
1.函數(shù)的奇偶性。
(1)若f(x)是偶函數(shù),那么f(x)=f(-x)。
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù))。
(3)推斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所給函數(shù)的解析式較為簡單,應(yīng)先化簡,再推斷其奇偶性。
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有一樣的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性。
2.復(fù)合函數(shù)的有關(guān)問題。
(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);討論函數(shù)的問題肯定要留意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定。
3.函數(shù)圖像(或方程曲線的對稱性)。
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上。
高一數(shù)學(xué)人教版知識點全文共2頁,當(dāng)前為第2頁。(2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然。
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
(4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0。
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱。
4.函數(shù)的周期性。
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,則y=f(x)是周期為2a的周期函數(shù)。
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù)。
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù)。
(4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù)。
5.推斷對應(yīng)是否為映射時,抓住兩點。
(1)A中元素必需都有象且。
(2)B中元素不肯定都有原象,并且A中不同元素在B中可以有一樣高一數(shù)學(xué)人教版知識點全文共3頁,當(dāng)前為第3頁。的象。
6.能嫻熟地用定義證明函數(shù)的單調(diào)性,求反函數(shù),推斷函數(shù)的奇偶性。
7.對于反函數(shù),應(yīng)把握以下一些結(jié)論。
(1)定義域上的單調(diào)函數(shù)必有反函數(shù)。
(2)奇函數(shù)的反函數(shù)也是奇函數(shù)。
(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù)。
(4)周期函數(shù)不存在反函數(shù)。
(5)互為反函數(shù)的兩個函數(shù)具有一樣的單調(diào)性。
(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。
8.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合。
二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系。
9.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題。
10.恒成立問題的處理(方法)。
(1)分別參數(shù)法。
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。
人教版高一數(shù)學(xué)學(xué)問點整理
復(fù)數(shù)定義
高一數(shù)學(xué)人教版知識點全文共4頁,當(dāng)前為第4頁。我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時,這個復(fù)數(shù)可以視為實數(shù);當(dāng)z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復(fù)數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項式在復(fù)數(shù)域中總有根。
復(fù)數(shù)表達式
虛數(shù)是與任何事物沒有聯(lián)系的,是肯定的,所以符合的表達式為:
a=a+ia為實部,i為虛部
復(fù)數(shù)運算法則
加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。
復(fù)數(shù)與幾何
①幾何形式
復(fù)數(shù)z=a+bi被復(fù)平面上的點z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來討論。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。
②向量形式
高一數(shù)學(xué)人教版知識點全文共5頁,當(dāng)前為第5頁。復(fù)數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復(fù)數(shù)四則運算得到恰當(dāng)?shù)膸缀谓忉尅?/p>
③三角形式
復(fù)數(shù)z=a+bi化為三角形式
高一年級(數(shù)學(xué)(學(xué)習(xí)方法))歸納
理解教師講解的內(nèi)容
學(xué)生對教師所講的內(nèi)容的理解,還沒能到達教師所要求的層次。因此,每天在做作業(yè)之前,肯定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅持如此,經(jīng)常是好學(xué)生與差學(xué)生的區(qū)分。尤其練習(xí)題不太配套時,作業(yè)中往往沒有教師剛剛講過的題目類型,因此不能比照消化。假如自己又不留意對此落實,天長日久,就會造成極大損失。
學(xué)會做題
要把課本,筆記,區(qū)單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養(yǎng)成一個習(xí)慣,在讀材料時隨時做標記,告知自己下次再讀這份材料時的閱讀重點。長期保持這個習(xí)慣,學(xué)生就能由博反約,把厚書讀成薄書。積存起自己的獨特的,也就是最適合自己進展復(fù)習(xí)的材料。這樣積存起來的資料才有活力,才能用的上。
整理資料
要留意積存復(fù)習(xí)資料。把課堂筆記,練習(xí),區(qū)單元測驗,各種試卷,高一數(shù)學(xué)人教版知識點全文共6頁,當(dāng)前為第6頁。都分門別類按時間挨次整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內(nèi)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度個人店面租賃合同租賃費用調(diào)整辦法
- 二零二五年度高層建筑消防改造勞務(wù)分包合同范本2篇
- 二零二五年度內(nèi)部承包合作協(xié)議范本12篇
- 《特種設(shè)備安全法》解析-浙江
- 酒店管理工作中的客戶服務(wù)
- 科技應(yīng)用在小班教育中的探索計劃
- 二零二五年度個人租賃山地別墅及園林使用權(quán)合同4篇
- 二零二五年度寵物領(lǐng)養(yǎng)合同范本3篇
- 二零二五年度企業(yè)收入證明修訂協(xié)議3篇
- 二零二五年度離婚方式適用條件及技巧解析合同3篇
- 2025年供應(yīng)鏈管理培訓(xùn)課件
- 2025中智集團招聘高頻重點提升(共500題)附帶答案詳解
- 《攜程旅行營銷環(huán)境及營銷策略研究》10000字(論文)
- 餐飲行業(yè)優(yōu)化食品供應(yīng)鏈管理計劃
- 復(fù)工復(fù)產(chǎn)六個一方案模板
- 2024夏季廣東廣州期貨交易所招聘高頻難、易錯點500題模擬試題附帶答案詳解
- 浙江省2024年高考化學(xué)模擬試題(含答案)2
- 2024新人教七年級英語上冊 Unit 2 Were Family!(大單元教學(xué)設(shè)計)
- 材料力學(xué)之材料疲勞分析算法:S-N曲線法:疲勞分析案例研究與項目實踐.Tex.header
- 中國醫(yī)美行業(yè)2024年度洞悉報告-德勤x艾爾建-202406
- 藥用植物種植制度和土壤耕作技術(shù)
評論
0/150
提交評論