版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版八下18.2.2菱形(第1課時(shí))教學(xué)設(shè)計(jì)教學(xué)內(nèi)容解析教學(xué)流程圖地位與作用學(xué)生已經(jīng)學(xué)習(xí)了平行四邊形、矩形的性質(zhì)與判定,可以類比平行四邊形、矩形研究菱形,也為學(xué)習(xí)正方形打下基礎(chǔ).菱形既是中心對(duì)稱圖形,也是軸對(duì)稱圖形,同時(shí)還可以綜合等腰三角形和直角三角形的知識(shí),對(duì)特殊平行四邊形的學(xué)習(xí)具有一般性的指導(dǎo)意義.本節(jié)通過平行四邊形邊的特殊化得到菱形的概念,再類比平行四邊形、矩形的研究方法,從邊、對(duì)角線、對(duì)稱性等角度研究菱形的概念.再?gòu)囊话愕教厥?,探究?0°角的菱形的特殊性,進(jìn)一步體驗(yàn)一般與特殊的關(guān)系.概念解析作為特殊的平行四邊形,菱形具有一組鄰邊相等,從而菱形具有平行四邊形所有的性質(zhì),而且還有不同于平行四邊形的性質(zhì),體現(xiàn)在邊、對(duì)角線和對(duì)稱性上.思想方法研究菱形主要用運(yùn)用類比的思想和從一般到特殊的思想.知識(shí)類型菱形的概念屬于概念性知識(shí),菱形的性質(zhì)屬于原理與規(guī)則的知識(shí).教學(xué)重點(diǎn)菱形概念和性質(zhì).教學(xué)目標(biāo)解析教學(xué)目標(biāo)1.能說出菱形的定義,知道菱形具有所有平行四邊形的性質(zhì).2.能利用平行四邊形的性質(zhì)推導(dǎo)并證明菱形的性質(zhì)定理.3.能利用菱形的性質(zhì)定理解決問題.目標(biāo)解析達(dá)成目標(biāo)1和2的標(biāo)志是:學(xué)生能經(jīng)歷菱形概念的形成過程和利用類比的思想發(fā)現(xiàn)菱形的性質(zhì);達(dá)成目標(biāo)3的標(biāo)志是:能利用菱形的性質(zhì)進(jìn)行證明和計(jì)算,比如課本例題,以及進(jìn)一步探究含60°角的菱形的有關(guān)數(shù)量關(guān)系.教學(xué)問題診斷分析具備的基礎(chǔ)前面已經(jīng)學(xué)習(xí)了平行四邊形、矩形的性質(zhì)與判定,知道了研究方法:從一般到特殊、類比以及從哪些方面進(jìn)行研究.與本課目標(biāo)的差距分析從對(duì)稱性上認(rèn)識(shí)菱形的性質(zhì),需要有深入理解的能力,這是與本節(jié)課的差距所在.存在的問題學(xué)生容易將菱形與矩形的性質(zhì)產(chǎn)生混淆.應(yīng)對(duì)策略做好菱形與矩形性質(zhì)的比較能較好的避免混淆.教學(xué)難點(diǎn)構(gòu)建菱形的研究路徑,發(fā)現(xiàn)菱形的性質(zhì).綜合運(yùn)用性質(zhì)定理解決問題.教學(xué)支持條件分析由于菱形是特殊的平行四邊形,所以菱形概念的獲得需要通過觀察平行四邊形的特征.可以利用幾何畫板等工具,展示從一般到特殊的變化過程,幫助理解菱形的概念.利用動(dòng)態(tài)幾何工具中的測(cè)量工具,可以探究菱形的性質(zhì).教學(xué)過程設(shè)計(jì)課前檢測(cè)1.下列說法正確的是()A.有一組對(duì)角是直角的四邊形一定是矩形B.有一組鄰角是直角的四邊形一定是矩形C.對(duì)角線互相平分的四邊形是矩形D.對(duì)角互補(bǔ)的平行四邊形是矩形2.在矩形ABCD中,∠DBC=29°,將矩形沿直線BD折疊,頂點(diǎn)C落在點(diǎn)E處,則∠ABE的度數(shù)是()A.29°B.32°C.22°D.61°3.如圖,矩形的兩條對(duì)角線的一個(gè)夾角為60°,兩條對(duì)角線的長(zhǎng)度的和為20cm,則這個(gè)矩形的一條較短邊的長(zhǎng)度為()A.10cmB.8cmC.6cmD.5cm設(shè)計(jì)意圖:本組課前檢測(cè)主要檢測(cè)矩形的判定和性質(zhì),有兩個(gè)目的,其一是復(fù)習(xí)矩形的判定和性質(zhì),其二是通過類比矩形的研究過程,引出對(duì)于探究菱形概念和性質(zhì)的方法的回憶.教學(xué)目標(biāo)11.教學(xué)目標(biāo)1:能說出菱形的定義,知道菱形具有所有平行四邊形的性質(zhì).教學(xué)過程1.問題1:在平行四邊形中,如果內(nèi)角大小保持不變僅改變邊的長(zhǎng)度,能否得到一個(gè)特殊的平行四邊形?(操作幾何畫板,展示動(dòng)態(tài)圖形)引出菱形的概念:有一組鄰邊相等的平行四邊形叫做菱形.問題2:你能舉出生活中你看到的菱形嗎?設(shè)計(jì)意圖:通過將平行四邊形的邊特殊化,得到菱形,引導(dǎo)學(xué)生用一般觀念的指導(dǎo)研究幾何圖形,學(xué)會(huì)學(xué)習(xí)方法.【測(cè)評(píng)1】下列說法正確的是()A.菱形是矩形
B.菱形是特殊的平行四邊形C.平行四邊形是菱形D.有一組鄰邊相等的四邊形是菱形設(shè)計(jì)意圖:通過此題檢驗(yàn)學(xué)生對(duì)概念內(nèi)涵與外延的理解,為下一步的教學(xué)決策提供依據(jù),大多數(shù)學(xué)生已經(jīng)學(xué)會(huì),才能進(jìn)入下一段的學(xué)習(xí).一旦發(fā)現(xiàn)沒有學(xué)會(huì)的學(xué)生較多,就必須對(duì)原來的設(shè)計(jì)作出調(diào)整,生成新的教學(xué)流程,幫助學(xué)生達(dá)成學(xué)習(xí)目標(biāo).教學(xué)目標(biāo)2教學(xué)目標(biāo)32.教學(xué)目標(biāo)2.
能利用平行四邊形的性質(zhì)推導(dǎo)并證明菱形的性質(zhì)定理.教學(xué)過程2.問題三:從哪些方面探究菱形的性質(zhì)?師生互動(dòng)設(shè)計(jì):引導(dǎo)學(xué)生類比平行四邊形或矩形的學(xué)習(xí)過程,從邊、角、對(duì)角線、對(duì)稱性等方面進(jìn)行探究.通過小組合作交流,發(fā)現(xiàn)菱形的性質(zhì),并能對(duì)所得結(jié)論進(jìn)行說理.可獲得如下性質(zhì):1.菱形的四條邊相等;2.菱形的兩條對(duì)角線互相垂直平分,并且每一條對(duì)角線平分一組對(duì)角.性質(zhì)拓展應(yīng)用:3.菱形是軸對(duì)稱圖形(2條對(duì)稱軸),也是中心對(duì)稱圖形.4.菱形的每條邊上的高相等.5.菱形的面積等于對(duì)角線乘積的一半.追問:為了更好的理解這些性質(zhì),利用如圖的菱形,找一找以下數(shù)量關(guān)系:相等的線段:AB=BC=CD=DA,OA=OC,OB=OD相等的角:∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8,∠ABC=∠ADC,∠DAD=∠BCD,∠AOB=∠BOC=∠COD=∠DOA=90°.等腰三角形有:△ABD,△ADC,△BCD,△CBD.直角三角形有:△AOB,△BOC,△COD,△AOD.全等三角形有:△AOB≌△COB≌△AOD≌△COD,△ABC≌ADC,△ABD≌△CDB.總結(jié):為了防止與平行四邊形和矩形混淆,可利用下圖從邊、角、對(duì)角線、對(duì)稱性等方面比較圖形特征:設(shè)計(jì)意圖:通過定性和定量的研究,以及圖形之間的對(duì)比,幫助學(xué)生認(rèn)識(shí)菱形的本質(zhì)屬性,有效突出教學(xué)重點(diǎn),突破難點(diǎn).【測(cè)評(píng)2】下列說法正確的是()A.菱形的對(duì)角線相等B.
菱形有一個(gè)角等于90°C.菱形有四條對(duì)稱軸D.菱形的對(duì)角線互相垂直設(shè)計(jì)意圖:檢驗(yàn)對(duì)菱形性質(zhì)的理解,大多數(shù)學(xué)生已經(jīng)學(xué)會(huì),才能進(jìn)入下一段的學(xué)習(xí).一旦發(fā)現(xiàn)沒有學(xué)會(huì)的學(xué)生較多,就必須對(duì)原來的設(shè)計(jì)作出調(diào)整,生成新的教學(xué)流程,幫助學(xué)生達(dá)成學(xué)習(xí)目標(biāo).教學(xué)目標(biāo)33.教學(xué)目標(biāo)3.
能利用菱形的性質(zhì)定理解決問題.教學(xué)過程3【例題3】如圖,菱形花壇ABCD的邊長(zhǎng)為20m,∠ABC=60°,沿著菱形的對(duì)角線修建了兩條小路AC和BD.求兩條小路的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后兩位)和花壇的面積(結(jié)果保留小數(shù)點(diǎn)后一位).解:∵花壇ABCD的形狀是菱形,∴AC⊥BD,∠ABO=∠ABC=30o.在Rt△ABO中,AO=AB=10.BO===.∴花壇的兩條小路長(zhǎng)AC=2AO=20m,BD=2BO=≈34.64m.花壇的面積S菱形ABCD=AC?BD=≈346.4m2.設(shè)計(jì)意圖:這個(gè)例題是對(duì)菱形性質(zhì)的理解和應(yīng)用,涉及到菱形的性質(zhì)等知識(shí)點(diǎn),涉及轉(zhuǎn)化化歸思想等思考方法.追問:上面這個(gè)例題中,研究了一個(gè)怎樣的菱形,它又有哪些更特殊的性質(zhì)?教學(xué)過程4.4.探究含60°角的菱形的特殊性1.
如圖,在菱形ABCD中,
∠ABC=
60°你能發(fā)現(xiàn)什么?2.
如圖,在菱形ABCD中,
∠ABC=
60°點(diǎn)E,F(xiàn)分別在BC,CD上,滿足BE=CF.當(dāng)點(diǎn)E在BC上運(yùn)動(dòng)時(shí),你有什么發(fā)現(xiàn)?設(shè)計(jì)意圖:從一般到特殊,認(rèn)識(shí)更為特殊的菱形的性質(zhì).【測(cè)評(píng)3】1.在菱形ABCD中,對(duì)角線AC與BD
相交于點(diǎn)O.已知AB=5cm,AO=4cm,求
BD的長(zhǎng).2.已知:如圖,四邊形ABCD是菱形,F(xiàn)是AB上一點(diǎn),DF交AC于E.求證:∠AFD=∠CBE.設(shè)計(jì)意圖:通過兩個(gè)問題的解決及時(shí)了解課堂知識(shí)的掌握情況,為課堂調(diào)整提供參考.歸納總結(jié)(1)你能總結(jié)一下本節(jié)課研究的內(nèi)容嗎?(2)本節(jié)課的研究思路是怎樣的?(3)菱形關(guān)于對(duì)角線的性質(zhì)反映了菱形怎樣的對(duì)稱性?對(duì)角線互相垂直平分反映了菱形既是中心對(duì)稱圖形又是軸對(duì)稱圖形.設(shè)計(jì)意圖:總結(jié)歸納,形成知識(shí)框圖、研究方法路線圖.目標(biāo)檢測(cè)設(shè)計(jì)一、選擇題1.菱形具有而平行四邊形不一定具有的性質(zhì)是()A.內(nèi)角和為360°B.對(duì)角線互相垂直C.對(duì)邊平行D.對(duì)角線互相平分2.已知菱形的一條對(duì)角線與邊長(zhǎng)相等,則菱形的鄰角度數(shù)分別為()A.45°,135°B.60°,120°C.90°,90°D.30°,150°二、填空題3.已知菱形ABCD的周長(zhǎng)為8cm,則菱形的邊長(zhǎng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電氣控制原理圖》課件
- DB32T-建筑工程BIM規(guī)劃報(bào)建數(shù)據(jù)規(guī)范編制說明
- 給予是快樂的課件公開課專用
- 《口腔潔治課件》課件
- 基因工程的基本操作程序課件
- 《TA溝通分析課程》課件
- 《伊犁河大橋》課件
- 生活處處有哲學(xué)課件
- 單位管理制度展示匯編【員工管理篇】
- 中國(guó)武都頭風(fēng)痛丸項(xiàng)目投資可行性研究報(bào)告
- 安谷鐵龍煤礦整合技改施工組織設(shè)計(jì)樣本
- 《新概念英語第二冊(cè)》電子書、單詞、筆記、練習(xí)冊(cè)(附答案)匯編
- 2023年云南大學(xué)滇池學(xué)院招聘考試真題
- 品質(zhì)助理述職報(bào)告
- 2023-2024學(xué)年湖南省長(zhǎng)沙市雨花區(qū)外研版(三起)五年級(jí)上冊(cè)期末質(zhì)量檢測(cè)英語試卷
- 超越指標(biāo):存量時(shí)代降本增效的利器
- 部隊(duì)休假安全教育課件
- 2024縣級(jí)應(yīng)急廣播系統(tǒng)技術(shù)規(guī)范
- 一年級(jí)道德與法治無紙筆期末檢測(cè)質(zhì)量分析
- 視頻剪輯師工作總結(jié)
- 新疆維吾爾自治區(qū)巴音郭楞蒙古自治州2023-2024學(xué)年二年級(jí)上學(xué)期期末數(shù)學(xué)試卷
評(píng)論
0/150
提交評(píng)論