臨川一中實驗學(xué)校2024屆高三最后一模數(shù)學(xué)試題含解析_第1頁
臨川一中實驗學(xué)校2024屆高三最后一模數(shù)學(xué)試題含解析_第2頁
臨川一中實驗學(xué)校2024屆高三最后一模數(shù)學(xué)試題含解析_第3頁
臨川一中實驗學(xué)校2024屆高三最后一模數(shù)學(xué)試題含解析_第4頁
臨川一中實驗學(xué)校2024屆高三最后一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

臨川一中實驗學(xué)校2024屆高三最后一模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.122.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.3.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-24.設(shè),點,,,,設(shè)對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.5.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍6.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.37.偶函數(shù)關(guān)于點對稱,當(dāng)時,,求()A. B. C. D.8.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.9.執(zhí)行如圖的程序框圖,若輸出的結(jié)果,則輸入的值為()A. B.C.3或 D.或10.已知函數(shù),則不等式的解集為()A. B. C. D.11.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.712.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)(為虛數(shù)單位),則的模為____.14.農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.15.從2、3、5、7、11、13這六個質(zhì)數(shù)中任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡分數(shù)表示)16.設(shè)集合,,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.18.(12分)已知函數(shù).(Ⅰ)當(dāng)時,求不等式的解集;(Ⅱ)若不等式對任意實數(shù)恒成立,求實數(shù)的取值范圍.19.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對于任意,恒成立,求的取值范圍.20.(12分)在四棱錐的底面是菱形,底面,,分別是的中點,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點的位置;若不存在,說明理由.21.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.22.(10分)隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學(xué)員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學(xué)員第1次參加科目二考試進行了統(tǒng)計,得到下表:考試情況男學(xué)員女學(xué)員第1次考科目二人數(shù)1200800第1次通過科目二人數(shù)960600第1次未通過科目二人數(shù)240200若以上表得到的男、女學(xué)員第1次通過科目二考試的頻率分別作為此駕校男、女學(xué)員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現(xiàn)有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產(chǎn)生的補考費用之和為元,求的分布列與數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

中位數(shù)指一串?dāng)?shù)據(jù)按從小(大)到大(?。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.2、D【解析】

根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標運算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.3、B【解析】

由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時,有最大值,當(dāng)時,有最小值.故選:B.【點睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.4、A【解析】

先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.【點睛】本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.5、D【解析】

先求得,再根據(jù)三角函數(shù)圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍得到的圖像.故選:D【點睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.6、B【解析】

過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質(zhì)可構(gòu)造方程求得,進而求得結(jié)果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.7、D【解析】

推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時,,則.故選:D.【點睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.8、D【解析】

根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因為當(dāng)時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.9、D【解析】

根據(jù)逆運算,倒推回求x的值,根據(jù)x的范圍取舍即可得選項.【詳解】因為,所以當(dāng),解得

,所以3是輸入的x的值;當(dāng)時,解得,所以是輸入的x的值,所以輸入的x的值為

或3,故選:D.【點睛】本題考查了程序框圖的簡單應(yīng)用,通過結(jié)果反求輸入的值,屬于基礎(chǔ)題.10、D【解析】

先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.11、B【解析】

根據(jù)拋物線中過焦點的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質(zhì)可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.12、D【解析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,所以.14、【解析】

(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個三角形面積是,由對稱性可知該六面是由兩個正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,由于圖像的對稱性,內(nèi)部的小球要是體積最大,就是球要和六個面相切,連接球心和五個頂點,把六面體分成了六個三棱錐設(shè)球的半徑為,所以,所以球的體積.故答案為:;.【點睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計算,考查邏輯推理能力和空間想象能力求解球的體積關(guān)鍵是判斷在什么情況下,其體積達到最大,考查運算求解能力.15、【解析】

依據(jù)古典概型的計算公式,分別求“任取兩個數(shù)”和“任取兩個數(shù),和是質(zhì)數(shù)”的事件數(shù),計算即可?!驹斀狻俊叭稳蓚€數(shù)”的事件數(shù)為,“任取兩個數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個,所以任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是。【點睛】本題主要考查古典概型的概率求法。16、【解析】

先解不等式,再求交集的定義求解即可.【詳解】由題,因為,解得,即,則,故答案為:【點睛】本題考查集合的交集運算,考查解一元二次不等式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),以為圓心,為半徑的圓;(2)【解析】

(1)根據(jù)極坐標與直角坐標的互化公式,直接得到的直角坐標方程并判斷形狀;(2)聯(lián)立直線參數(shù)方程與的直角坐標方程,根據(jù)直線參數(shù)方程中的幾何意義結(jié)合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設(shè)點,所對應(yīng)的參數(shù)分別為,,則,.,解得,則.【點睛】本題考查極坐標與直角坐標的互化以及根據(jù)直線參數(shù)方程中的幾何意義求值,難度一般.(1)極坐標與直角坐標的互化公式:;(2)若要使用直線參數(shù)方程中的幾何意義,要注意將直線的標準參數(shù)方程代入到對應(yīng)曲線的直角坐標方程中,構(gòu)成關(guān)于的一元二次方程并結(jié)合韋達定理形式進行分析求解.18、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據(jù)絕對值不等式的性質(zhì)可得,不等式對任意實數(shù)恒成立,等價于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當(dāng)時,即,①當(dāng)時,得,所以;②當(dāng)時,得,即,所以;③當(dāng)時,得成立,所以.故不等式的解集為.(Ⅱ)因為,由題意得,則,解得,故的取值范圍是.19、(1);(2)【解析】

(1)求出,即可求出切線的點斜式方程,整理即可;(2)的取值范圍滿足,,求出,當(dāng)時求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時切點坐標為所以切線方程為.(2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時時,,時,,故存在使得且當(dāng)時,當(dāng)時,所以當(dāng)時,當(dāng)時,所以當(dāng)時,取得極小值,也是最小值,故由于,所以,.【點睛】本題考查導(dǎo)數(shù)的幾何意義、不等式恒成立問題,應(yīng)用導(dǎo)數(shù)求最值是解題的關(guān)鍵,考查邏輯推理、數(shù)學(xué)計算能力,屬于中檔題.20、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】

(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標系,求得直線的方向向量與平面的一個法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點O為坐標原點,建立如圖所示的空間直角坐標系,則:,設(shè)平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,而,設(shè)直線與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿足題意的點存在,設(shè),,據(jù)此可得:,即:,從而點F的坐標為,據(jù)此可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論