下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024年高二數(shù)學專項練習兩角差的余弦公式一、知識要點1、兩角差的余弦公式及證明:2、基礎方法(1)求值、證明問題:將已知角、未知角互相表示(2)化簡、證明問題:從角出發(fā)——化同角,從名出發(fā)——化同名,降次.二、典型例題例1.求證:(1)(2)證明:例2.求證:.證明:例3.求值:(1);(2).解:例4.化簡:(1);(2).解:向量的概念與線性運算一、知識要點(一)基本概念:向量有向線段零向量與單位向量平行向量(共線向量)相等向量(二)向量的加法與減法1.加法定義:,平行四邊形法則與三角形法則2.減法定義:,平行四邊形法則與三角形法則說明:加法、減法的結(jié)果依然是一個向量;(三)實數(shù)與向量的乘積(數(shù)乘)1.定義:模、方向兩個方面2.運算律3.向量共線的充要條件與非零共線存在惟一的一個實數(shù)使得說明:非零條件不可去掉二、例題分析例1.已知點,,.設的平分線與相交于,那么有,其中等于()(A)2(B)(C)-3(D)-例2.已知向量,且則一定共線的()(A)A、B、D(B)A、B、C(C)B、C、D(D)A、C、D例3.若直線按向量平移后與圓相切,則c的值為() A.8或-2B.6或-4 C.4或-6D.2或-8例4.已知向量a=(-2,2),b=(5,k).若|a+b|不超過5,則k的取值范圍是() A.[-4,6] B.[-6,4] C.[-6,2] D.[-2,6]例5.已知函數(shù)的圖象與軸分別相交于點A.B,(分別是與軸正半軸同方向的單位向量),函數(shù)求的值;(2)當滿足時,求函數(shù)的最小值例6.已知點,點滿足。(1)為何值時,在軸上?在軸上?在第二象限?(2)四邊形能否成為平行四邊形?若能,求出相應的值;若不能,請說明理由。平面向量的實際背景及基本概念一、知識要點1、向量:既有大小、又有方向的量二要素:大小、方向2、模、零向量、單位向量、相等向量、相反向量、平行向量(共線向量)注意:1.向量不能比較大小,但向量的??梢员容^大小2.平行向量的定義中“非零”限制3.相等向量、相反向量、平行向量(共線向量)的定義都應該有一個“規(guī)定”4.注意符號的使用“”二、典型例題例1.判斷真假①單位向量都相等;②向量的模都是正實數(shù);③共線向量一定在同一條直線上;④若,則且AB∥CD;⑤若,,則;⑥若ABCD是平行四邊形,則.解:例2.判斷下列命題的正誤:(1)零向量與非零向量平行;(2)長度相等方向相反的向量共線;(3)若向量與向量不共線,則與都是非零向量;(4)若兩個向量相等,則它們的起點、方向、長度必須相等;(5)若兩個向量的模相等,則這兩個向量不是相等向量就是相反向量?(6)若非零向量是共線向量,則A、B、C、D四點共線;(7)共線的向量一定相等;(8)相等的向量一定共線.解:例3.若O是正三角形ABC的中心,則向量、、是()(A)有相同起點的向量(B)平行向量(C)模相等的向量(D)相等的向量解:例4.兩個向量不相等,則這兩個向量()(A)不共線(B)長度不相等(C)不可能均為單位向量(D)不可能均為零向量解:例5.若四邊形RSPQ為菱形,則下列可用一條有向線段表示的向量是()(A)與(B)與(C)與(D)與解:例6.如圖是4×3的矩形(每個方格都是單位正方形),在起點與終點都在小方格的頂點處的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)產(chǎn)品電商平臺合作協(xié)議范本4篇
- 2025年度女方離婚協(xié)議書范本與執(zhí)行效力分析4篇
- 二零二五年度公務員借調(diào)期間心理健康輔導服務合同4篇
- 二零二四全新足浴店員工培訓進修及教育資助合同3篇
- 2025年度個人教育培訓服務合同范本15篇
- 健康知識普及與傳播-深度研究
- 2025年度個人貨物運輸代理及車輛維護合同4篇
- 二零二五年度油氣田鉆井安全作業(yè)合同范本4篇
- 2025年度新型木門研發(fā)合作采購合同4篇
- 二零二五年度美容院客戶關系管理與維護合同2篇
- 2025年上半年江蘇連云港灌云縣招聘“鄉(xiāng)村振興專干”16人易考易錯模擬試題(共500題)試卷后附參考答案
- DB3301T 0382-2022 公共資源交易開評標數(shù)字見證服務規(guī)范
- 人教版2024-2025學年八年級上學期數(shù)學期末壓軸題練習
- 江蘇省無錫市2023-2024學年八年級上學期期末數(shù)學試題(原卷版)
- 俄語版:中國文化概論之中國的傳統(tǒng)節(jié)日
- 2022年湖南省公務員錄用考試《申論》真題(縣鄉(xiāng)卷)及答案解析
- 婦科一病一品護理匯報
- 哪吒之魔童降世
- 2022年上海市各區(qū)中考一模語文試卷及答案
- 2024年全國統(tǒng)一高考數(shù)學試卷(新高考Ⅱ)含答案
- 地震工程學概論課件
評論
0/150
提交評論