高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題4 突破點10 空間幾何體表面積或體積的求解 理-人教高三數(shù)學(xué)試題_第1頁
高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題4 突破點10 空間幾何體表面積或體積的求解 理-人教高三數(shù)學(xué)試題_第2頁
高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題4 突破點10 空間幾何體表面積或體積的求解 理-人教高三數(shù)學(xué)試題_第3頁
高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題4 突破點10 空間幾何體表面積或體積的求解 理-人教高三數(shù)學(xué)試題_第4頁
高三數(shù)學(xué)二輪復(fù)習(xí) 第1部分 專題4 突破點10 空間幾何體表面積或體積的求解 理-人教高三數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題四立體幾何建知識網(wǎng)絡(luò)明內(nèi)在聯(lián)系高考點撥]立體幾何專題是高考中當(dāng)仁不讓的熱點之一,常以“兩小一大”呈現(xiàn),小題主要考查三視圖與空間幾何體的體積(特別是與球有關(guān)的體積)和空間位置關(guān)系及空間角,一大題??伎臻g位置關(guān)系的證明與空間角、距離的探求.本專題主要從“空間幾何體表面積或體積的求解”“空間中的平行與垂直關(guān)系”“立體幾何中的向量方法”三大角度進(jìn)行典例剖析,引領(lǐng)考生明確考情并提升解題技能.

突破點10空間幾何體表面積或體積的求解提煉1求解幾何體的表面積或體積(1)對于規(guī)則幾何體,可直接利用公式計算.(2)對于不規(guī)則幾何體,可采用割補法求解;對于某些三棱錐,有時可采用等體積轉(zhuǎn)換法求解.(3)求解旋轉(zhuǎn)體的表面積和體積時,注意圓柱的軸截面是矩形,圓錐的軸截面是等腰三角形,圓臺的軸截面是等腰梯形的應(yīng)用.提煉2球與幾何體的外接與內(nèi)切(1)正四面體與球:設(shè)正四面體的棱長為a,由正四面體本身的對稱性,可知其內(nèi)切球和外接球的球心相同,則內(nèi)切球的半徑r=eq\f(\r(6),12)a,外接球的半徑R=eq\f(\r(6),4)a.圖10-1(2)正方體與球:設(shè)正方體ABCD-A1B1C1D1的棱長為a,O為其對稱中心,E,F(xiàn),H,G分別為AD,BC,B1C1,A1D1的中點,J為HF的中點,如圖10-1所示.①正方體的內(nèi)切球:截面圖為正方形EFHG的內(nèi)切圓,故其內(nèi)切球的半徑為OJ=eq\f(a,2);②正方體的棱切球:截面圖為正方形EFHG的外接圓,故其棱切球的半徑為OG=eq\f(\r(2)a,2);③正方體的外接球:截面圖為矩形ACC1A1的外接圓,故其外接球的半徑為OA1=eq\f(\r(3)a,2).回訪1幾何體的表面積或體積1.(2016·全國甲卷)如圖10-2是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為()圖10-2A.20π B.24πC.28π D.32πC由三視圖可知圓柱的底面直徑為4,母線長(高)為4,所以圓柱的側(cè)面積為2π×2×4=16π,底面積為π·22=4π;圓錐的底面直徑為4,高為2eq\r(3),所以圓錐的母線長為eq\r(2\r(3)2+22)=4,所以圓錐的側(cè)面積為π×2×4=8π.所以該幾何體的表面積為S=16π+4π+8π=28π.]2.(2015·全國甲卷)一個正方體被一個平面截去一部分后,剩余部分的三視圖如圖10-3,則截去部分體積與剩余部分體積的比值為()圖10-3A.eq\f(1,8) B.eq\f(1,7)C.eq\f(1,6) D.eq\f(1,5)D由已知三視圖知該幾何體是由一個正方體截去了一個“大角”后剩余的部分,如圖所示,截去部分是一個三棱錐.設(shè)正方體的棱長為1,則三棱錐的體積為V1=eq\f(1,3)×eq\f(1,2)×1×1×1=eq\f(1,6),剩余部分的體積V2=13-eq\f(1,6)=eq\f(5,6).所以eq\f(V1,V2)=eq\f(\f(1,6),\f(5,6))=eq\f(1,5),故選D.]3.(2014·全國卷Ⅱ)如圖10-4,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3cm,高為6cm的圓柱體毛坯切削得到,則切削掉部分的體積與原來毛坯體積的比值為()圖10-4A.eq\f(17,27) B.eq\f(5,9)C.eq\f(10,27) D.eq\f(1,3)C由三視圖可知幾何體是如圖所示的兩個圓柱的組合體.其中左面圓柱的高為4cm,底面半徑為2cm,右面圓柱的高為2cm,底面半徑為3cm,則組合體的體積V1=π×22×4+π×32×2=16π+18π=34π(cm3),原毛坯體積V2=π×32×6=54π(cm3),則所求比值為eq\f(54π-34π,54π)=eq\f(10,27).]回訪2球與幾何體的外接與內(nèi)切4.(2015·全國卷Ⅱ)已知A,B是球O的球面上兩點,∠AOB=90°,C為該球面上的動點.若三棱錐O-ABC體積的最大值為36,則球O的表面積為()A.36π B.64πC.144π D.256πC如圖,設(shè)球的半徑為R,∵∠AOB=90°,∴S△AOB=eq\f(1,2)R2.∵VO-ABC=VC-AOB,而△AOB面積為定值,∴當(dāng)點C到平面AOB的距離最大時,VO-ABC最大,∴當(dāng)C為與球的大圓面AOB垂直的直徑的端點時,體積VO-ABC最大為eq\f(1,3)×eq\f(1,2)R2×R=36,∴R=6,∴球O的表面積為4πR2=4π×62=144π.故選C.]5.(2013·全國卷Ⅰ)如圖10-5,有一個水平放置的透明無蓋的正方體容器,容器高8cm,將一個球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時測得水深為6cm,如果不計容器厚度,則球的體積為()圖10-5A.eq\f(500π,3)cm3 B.eq\f(866π,3)cm3C.eq\f(1372π,3)cm3 D.eq\f(2048π,3)cm3A如圖,作出球的一個截面,則MC=8-6=2(cm),BM=eq\f(1,2)AB=eq\f(1,2)×8=4(cm).設(shè)球的半徑為Rcm,則R2=OM2+MB2=(R-2)2+42,∴R=5,∴V球=eq\f(4,3)π×53=eq\f(500,3)π(cm3).]6.(2012·全國卷)已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2,則此棱錐的體積為()A.eq\f(\r(2),6) B.eq\f(\r(3),6)C.eq\f(\r(2),3) D.eq\f(\r(2),2)A由于三棱錐S-ABC與三棱錐O-ABC底面都是△ABC,O是SC的中點,因此三棱錐S-ABC的高是三棱錐O-ABC高的2倍,所以三棱錐S-ABC的體積也是三棱錐O-ABC體積的2倍.在三棱錐O-ABC中,其棱長都是1,如圖所示,S△ABC=eq\f(\r(3),4)×AB2=eq\f(\r(3),4),高OD=eq\r(12-\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),3)))2)=eq\f(\r(6),3),∴VS-ABC=2VO-ABC=2×eq\f(1,3)×eq\f(\r(3),4)×eq\f(\r(6),3)=eq\f(\r(2),6).]熱點題型1幾何體的表面積或體積題型分析:解決此類題目,準(zhǔn)確轉(zhuǎn)化是前提,套用公式是關(guān)鍵,求解時先根據(jù)條件確定幾何體的形狀,再套用公式求解.(1)(2016·全國乙卷)如圖10-6,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條互相垂直的半徑.若該幾何體的體積是eq\f(28π,3),則它的表面積是()圖10-6A.17π B.18πC.20π D.28π(2)(2016·全國丙卷)如圖10-7,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的表面積為()圖10-7A.18+36eq\r(5) B.54+18eq\r(5)C.90 D.81(1)A(2)B(1)由幾何體的三視圖可知,該幾何體是一個球體去掉上半球的eq\f(1,4),得到的幾何體如圖.設(shè)球的半徑為R,則eq\f(4,3)πR3-eq\f(1,8)×eq\f(4,3)πR3=eq\f(28,3)π,解得R=2.因此它的表面積為eq\f(7,8)×4πR2+eq\f(3,4)πR2=17π.故選A.(2)由三視圖可知該幾何體是底面為正方形的斜四棱柱,其中有兩個側(cè)面為矩形,另兩個側(cè)面為平行四邊形,則表面積為(3×3+3×6+3×3eq\r(5))×2=54+18eq\r(5).故選B.]1.求解幾何體的表面積及體積的技巧(1)求幾何體的表面積及體積問題,可以多角度、多方位地考慮,熟記公式是關(guān)鍵所在.求三棱錐的體積,等體積轉(zhuǎn)化是常用的方法,轉(zhuǎn)化原則是其高易求,底面放在已知幾何體的某一面上.(2)求不規(guī)則幾何體的體積,常用分割或補形的思想,將不規(guī)則幾何體轉(zhuǎn)化為規(guī)則幾何體以易于求解.2.根據(jù)幾何體的三視圖求其表面積與體積的三個步驟(1)根據(jù)給出的三視圖判斷該幾何體的形狀.(2)由三視圖中的大小標(biāo)示確定該幾何體的各個度量.(3)套用相應(yīng)的面積公式與體積公式計算求解.變式訓(xùn)練1](1)(2016·平頂山二模)某幾何體的三視圖如圖10-8所示,則該幾何體的體積為()A.eq\f(13,3)+eq\f(π,3) B.5+eq\f(π,2)C.5+eq\f(π,3) D.eq\f(13,3)+eq\f(π,2)圖10-8(2)某幾何體的三視圖(單位:cm)如圖10-9所示,則此幾何體的表面積是()圖10-9A.90cm2 B.129cm2C.132cm2 D.138cm2圖10-10(3)(名師押題)如圖10-10,從棱長為6cm的正方體鐵皮箱ABCD-A1B1C1D1中分離出來由三個正方形面板組成的幾何圖形.如果用圖示中這樣一個裝置來盛水,那么最多能盛的水的體積為________cm3.(1)D(2)D(3)36(1)由三視圖知該幾何體是由一個長方體,一個三棱錐和一個eq\f(1,4)圓柱組成,故該幾何體的體積為V=2×1×2+eq\f(1,3)×eq\f(1,2)×1×1×2+eq\f(1,4)×π×12×2=eq\f(13,3)+eq\f(π,2).(2)該幾何體如圖所示,長方體的長、寬、高分別為6cm,4cm,3cm,直三棱柱的底面是直角三角形,邊長分別為3cm,4cm,5cm,所以表面積S=2×(4×6+4×3)+3×6+3×3]+eq\b\lc\(\rc\)(\a\vs4\al\co1(5×3+4×3+2×\f(1,2)×4×3))=99+39=138(cm2).(3)最多能盛多少水,實際上是求三棱錐C1-CD1B1的體積.又V三棱錐C1-CD1B1=V三棱錐C-B1C1D1=eq\f(1,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)×6×6))×6=36(cm3),所以用圖示中這樣一個裝置來盛水,最多能盛36cm3體積的水.]熱點題型2球與幾何體的切、接問題題型分析:與球有關(guān)的表面積或體積求解,其核心本質(zhì)是半徑的求解,這也是此類問題求解的主線,考生要時刻謹(jǐn)記.先根據(jù)幾何體的三視圖確定其結(jié)構(gòu)特征與數(shù)量特征,然后確定其外接球的球心,進(jìn)而確定球的半徑,最后代入公式求值即可;也可利用球的性質(zhì)——球面上任意一點對直徑所張的角為直角,然后根據(jù)幾何體的結(jié)構(gòu)特征構(gòu)造射影定理求解.(1)(2016·南昌二模)一個幾何體的三視圖如圖10-11所示,其中正視圖是正三角形,則該幾何體的外接球的表面積為()圖10-11A.eq\f(8π,3) B.eq\f(16π,3)C.eq\f(48π,3) D.eq\f(64π,3)(2)(2016·全國丙卷)在封閉的直三棱柱ABC-A1B1C1內(nèi)有一個體積為V的球.若AB⊥BC,AB=6,BC=8,AA1=3,則V的最大值是()A.4π B.eq\f(9π,2)C.6π D.eq\f(32π,3)(1)D(2)B(1)法一由三視圖可知,該幾何體是如圖所示的三棱錐S-ABC,其中HS是三棱錐的高,由三視圖可知HS=2eq\r(3),HA=HB=HC=2,故H為△ABC外接圓的圓心,該圓的半徑為2.由幾何體的對稱性可知三棱錐S-ABC外接球的球心O在直線HS上,連接OB.設(shè)球的半徑為R,則球心O到△ABC外接圓的距離為OH=|SH-OS|=|2eq\r(3)-R|,由球的截面性質(zhì)可得R=OB=eq\r(OH2+HB2)=eq\r(|2\r(3)-R|2+22),解得R=eq\f(4\r(3),3),所以所求外接球的表面積為4πR2=4π×eq\f(16,3)=eq\f(64π,3).故選D.法二由三視圖可知,該幾何體是如圖所示的三棱錐S-ABC,其中HS是三棱錐的高,由側(cè)視圖可知HS=2eq\r(3),由正視圖和側(cè)視圖可得HA=HB=HC=2.由幾何體的對稱性可知三棱錐外接球的球心O在HS上,延長SH交球面于點P,則SP就是球的直徑,由點A在球面上可得SA⊥AP.又SH⊥平面ABC,所以SH⊥AH.在Rt△ASH中,SA=eq\r(SH2+AH2)=eq\r(2\r(3)2+22)=4.設(shè)球的半徑為R,則SP=2R,在Rt△SPA中,由射影定理可得SA2=SH×SP,即42=2eq\r(3)×2R,解得R=eq\f(4\r(3),3),所以所求外接球的表面積為4πR2=4π×eq\f(16,3)=eq\f(64π,3).故選D.(2)由題意得要使球的體積最大,則球與直三棱柱的若干面相切.設(shè)球的半徑為R.因為△ABC的內(nèi)切圓半徑為eq\f(6+8-10,2)=2,所以R≤2.又2R≤3,所以R≤eq\f(3,2),所以Vmax=eq\f(4,3)πeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))3=eq\f(9,2)π.故選B.]解決球與幾何體的切、接問題的關(guān)鍵在于確定球的半徑與幾何體的度量之間的關(guān)系,這就需要靈活利用球的截面性質(zhì)以及組合體的截面特征來確定.對于旋轉(zhuǎn)體與球的組合體,主要利用它們的軸截面性質(zhì)建立相關(guān)數(shù)據(jù)之間的關(guān)系;而對于多面體,應(yīng)抓住多面體的結(jié)構(gòu)特征靈活選擇過球心的截面,把多面體的相關(guān)數(shù)據(jù)和球的半徑在截面圖形中體現(xiàn)出來.變式訓(xùn)練2](1)已知直三棱柱ABC-A1B1C1的6個頂點都在球O的球面上,若AB=3,AC=1,∠BAC=60°,AA1=2,則該三棱柱的外接球的體積為()【導(dǎo)學(xué)號:85952037】A.eq\f(40π,3) B.eq\f(40\r(30)π,27)C.eq\f(320\r(30)π,27) D.20π(2)(名師押題)一幾何體的三視圖如圖10-12(網(wǎng)格中每個正方形的邊長為1),若這個幾何體的頂點都在球O的表面上,則球O的表面積是________.圖10-12(1)B(2)20π(1)設(shè)△A1B1C1的外心為O1,△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論