2023-2024學年江蘇省鹽城市大豐區(qū)大豐區(qū)萬盈鎮(zhèn)沈灶初級中學中考數(shù)學全真模擬試卷含解析_第1頁
2023-2024學年江蘇省鹽城市大豐區(qū)大豐區(qū)萬盈鎮(zhèn)沈灶初級中學中考數(shù)學全真模擬試卷含解析_第2頁
2023-2024學年江蘇省鹽城市大豐區(qū)大豐區(qū)萬盈鎮(zhèn)沈灶初級中學中考數(shù)學全真模擬試卷含解析_第3頁
2023-2024學年江蘇省鹽城市大豐區(qū)大豐區(qū)萬盈鎮(zhèn)沈灶初級中學中考數(shù)學全真模擬試卷含解析_第4頁
2023-2024學年江蘇省鹽城市大豐區(qū)大豐區(qū)萬盈鎮(zhèn)沈灶初級中學中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年江蘇省鹽城市大豐區(qū)大豐區(qū)萬盈鎮(zhèn)沈灶初級中學中考數(shù)學全真模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.已知⊙O的半徑為5,若OP=6,則點P與⊙O的位置關(guān)系是()A.點P在⊙O內(nèi) B.點P在⊙O外 C.點P在⊙O上 D.無法判斷2.小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.3.函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④當1<x<3時,x2+(b﹣1)x+c<1.其中正確的個數(shù)為A.1 B.2 C.3 D.44.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值應是()A.110 B.158 C.168 D.1785.實數(shù)a,b在數(shù)軸上的位置如圖所示,以下說法正確的是()A.a(chǎn)+b=0 B.b<a C.a(chǎn)b>0 D.|b|<|a|6.據(jù)統(tǒng)計,第22屆冬季奧林匹克運動會的電視轉(zhuǎn)播時間長達88000小時,社交網(wǎng)站和國際奧委會官方網(wǎng)站也創(chuàng)下冬奧會收看率紀錄.用科學記數(shù)法表示88000為()A.0.88×105B.8.8×104C.8.8×105D.8.8×1067.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學記數(shù)法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣68.如圖,小明將一張長為20cm,寬為15cm的長方形紙(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,則剪去的直角三角形的斜邊長為()A.5cm B.12cm C.16cm D.20cm9.如圖所示的幾何體的左視圖是()A. B. C. D.10.如圖,一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤被等分成6個扇形區(qū)域,并涂上了相應的顏色,轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針指向藍色區(qū)域的概率是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.某種藥品原來售價100元,連續(xù)兩次降價后售價為81元,若每次下降的百分率相同,則這個百分率是.12.如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點E,弦CD=,且BD=5,則DE=_____.13.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.14.如圖,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是_________.15.已知點A(x1,y1),B(x2,y2)在直線y=kx+b上,且直線經(jīng)過第一、三、四象限,當x1<x2時,y1與y2的大小關(guān)系為______________.16.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______.三、解答題(共8題,共72分)17.(8分)如圖,在?ABCD中,AE⊥BC交邊BC于點E,點F為邊CD上一點,且DF=BE.過點F作FG⊥CD,交邊AD于點G.求證:DG=DC.18.(8分)如圖,AC是⊙O的直徑,PA切⊙O于點A,點B是⊙O上的一點,且∠BAC=30°,∠APB=60°.(1)求證:PB是⊙O的切線;(2)若⊙O的半徑為2,求弦AB及PA,PB的長.19.(8分)如圖,是等腰三角形,,.(1)尺規(guī)作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.20.(8分)如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,2)(1)求拋物線的表達式;(2)拋物線的對稱軸與x軸交于點M,點D與點C關(guān)于點M對稱,試問在該拋物線的對稱軸上是否存在點P,使△BMP與△ABD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.21.(8分)在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應點.請畫出平移后的△DEF.連接AD、CF,則這兩條線段之間的關(guān)系是________.22.(10分)如圖,已知是的直徑,點、在上,且,過點作,垂足為.求的長;若的延長線交于點,求弦、和弧圍成的圖形(陰影部分)的面積.23.(12分)計算:(﹣2)2+20180﹣24.如圖所示,某校九年級(3)班的一個學習小組進行測量小山高度的實踐活動.部分同學在山腳A點處測得山腰上一點D的仰角為30°,并測得AD的長度為180米.另一部分同學在山頂B點處測得山腳A點的俯角為45°,山腰D點的俯角為60°,請你幫助他們計算出小山的高度BC.(計算過程和結(jié)果都不取近似值)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

比較OP與半徑的大小即可判斷.【詳解】,,,點P在外,故選B.【點睛】本題考查點與圓的位置關(guān)系,記?。狐c與圓的位置關(guān)系有3種設的半徑為r,點P到圓心的距離,則有:點P在圓外;點P在圓上;點P在圓內(nèi).2、C【解析】

解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據(jù)關(guān)系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應用題,找準題目中的等量關(guān)系,難度不大.3、B【解析】分析:∵函數(shù)y=x2+bx+c與x軸無交點,∴b2﹣4c<1;故①錯誤。當x=1時,y=1+b+c=1,故②錯誤?!弋攛=3時,y=9+3b+c=3,∴3b+c+6=1。故③正確?!弋?<x<3時,二次函數(shù)值小于一次函數(shù)值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正確。綜上所述,正確的結(jié)論有③④兩個,故選B。4、B【解析】根據(jù)排列規(guī)律,10下面的數(shù)是12,10右面的數(shù)是14,∵8=2×4?0,22=4×6?2,44=6×8?4,∴m=12×14?10=158.故選C.5、D【解析】

根據(jù)圖形可知,a是一個負數(shù),并且它的絕對是大于1小于2,b是一個正數(shù),并且它的絕對值是大于0小于1,即可得出|b|<|a|.【詳解】A選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),但表示它們的點到原點的距離不相等,所以它們不互為相反數(shù),和不為0,故A錯誤;B選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而正數(shù)都大于負數(shù),故B錯誤;C選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而異號兩數(shù)相乘積為負,負數(shù)都小于0,故C錯誤;D選項:由圖中信息可知,表示實數(shù)a的點到原點的距離大于表示實數(shù)b的點到原點的距離,而在數(shù)軸上表示一個數(shù)的點到原點的距離越遠其絕對值越大,故D正確.∴選D.6、B【解析】試題分析:根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).因此,∵88000一共5位,∴88000=8.88×104.故選B.考點:科學記數(shù)法.7、D【解析】

根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).【詳解】解:0.0000025第一個有效數(shù)字前有6個0(含小數(shù)點前的1個0),從而.故選D.8、D【解析】

解答此題要延長AB、DC相交于F,則BFC構(gòu)成直角三角形,再用勾股定理進行計算.【詳解】延長AB、DC相交于F,則BFC構(gòu)成直角三角形,運用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.則剪去的直角三角形的斜邊長為1cm.故選D.【點睛】本題主要考查了勾股定理的應用,解答此題要延長AB、DC相交于F,構(gòu)造直角三角形,用勾股定理進行計算.9、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.10、B【解析】試題解析:∵轉(zhuǎn)盤被等分成6個扇形區(qū)域,而黃色區(qū)域占其中的一個,∴指針指向黃色區(qū)域的概率=.故選A.考點:幾何概率.二、填空題(本大題共6個小題,每小題3分,共18分)11、10%.【解析】

設平均每次降價的百分率為,那么第一次降價后的售價是原來的,那么第二次降價后的售價是原來的,根據(jù)題意列方程解答即可.【詳解】設平均每次降價的百分率為,根據(jù)題意列方程得,,解得,(不符合題意,舍去),答:這個百分率是.故答案為.【點睛】本題考查一元二次方程的應用,要掌握求平均變化率的方法.若設變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關(guān)系為.12、.【解析】

連接OD,OC,AD,由⊙O的直徑AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根據(jù)勾股定理可求出AD的長,在Rt△ADE中,利用∠DAC的正切值求解即可.【詳解】解:連接OD,OC,AD,∵半圓O的直徑AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴在Rt△ADE中,∵∠DAC=30°,∴DE=AD?tan30°故答案為【點睛】本題考查了圓周角定理、等邊三角形的判定與性質(zhì),勾股定理的應用等知識;綜合性比較強.13、x≥3y=1【解析】根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負數(shù),結(jié)果是x≥3,y=1.14、.【解析】

延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。\用勾股定理求解.【詳解】解:如圖,延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。逜C=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴點P到邊AB距離的最小值是1-1.故答案為:1-1.【點睛】本題考查了翻折變換,涉及到的知識點有直角三角形兩銳角互余、勾股定理等,解題的關(guān)鍵是確定出點P的位置.15、y1<y1【解析】

直接利用一次函數(shù)的性質(zhì)分析得出答案.【詳解】解:∵直線經(jīng)過第一、三、四象限,∴y隨x的增大而增大,∵x1<x1,∴y1與y1的大小關(guān)系為:y1<y1.故答案為:y1<y1.【點睛】此題主要考查了一次函數(shù)圖象上點的坐標特征,正確掌握一次函數(shù)增減性是解題關(guān)鍵.16、5或1.【解析】

先依據(jù)勾股定理求得AB的長,然后由翻折的性質(zhì)可知:AB′=5,DB=DB′,接下來分為∠B′DE=90°和∠B′ED=90°,兩種情況畫出圖形,設DB=DB′=x,然后依據(jù)勾股定理列出關(guān)于x的方程求解即可.【詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當∠B′DE=90°時,過點B′作B′F⊥AF,垂足為F.設BD=DB′=x,則AF=6+x,F(xiàn)B′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當∠B′ED=90°時,C與點E重合.∵AB′=5,AC=6,∴B′E=5.設BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長為5或1.三、解答題(共8題,共72分)17、證明見解析.【解析】試題分析:先由平行四邊形的性質(zhì)得到∠B=∠D,AB=CD,再利用垂直的定義得到∠AEB=∠GFD=90°,根據(jù)“ASA”判定△AEB≌△GFD,從而得到AB=DC,所以有DG=DC.試題解析:∵四邊形ABCD為平行四邊形,∴∠B=∠D,AB=CD,∵AE⊥BC,F(xiàn)G⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.考點:1.全等三角形的判定與性質(zhì);2.平行四邊形的性質(zhì).18、(1)見解析;(2)2【解析】試題分析:(1)連接OB,證PB⊥OB.根據(jù)四邊形的內(nèi)角和為360°,結(jié)合已知條件可得∠OBP=90°得證;(2)連接OP,根據(jù)切線長定理得直角三角形,根據(jù)含30度角的直角三角形的性質(zhì)即可求得結(jié)果.(1)連接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°.∵四邊形的內(nèi)角和為360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵點B是⊙O上的一點,∴PB是⊙O的切線.(2)連接OP,∵PA、PB是⊙O的切線,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考點:此題考查了切線的判定、切線長定理、含30度角的直角三角形的性質(zhì)點評:要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.19、(1)作圖見解析(2)為等腰三角形【解析】

(1)作角平分線,以B點為圓心,任意長為半徑,畫圓??;交直線AB于1點,直線BC于2點,再以2點為圓心,任意長為半徑,畫圓弧,再以1點為圓心,任意長為半徑,畫圓弧,相交于3點,連接3點和O點,直線3O即是已知角AOB的對稱中心線.(2)分別求出的三個角,看是否有兩個角相等,進而判斷是否為等腰三角形.【詳解】(1)具體如下:(2)在等腰中,,BD為∠ABC的平分線,故,,那么在中,∵∴是否為等腰三角形.【點睛】本題考查角平分線的作法,以及判定等腰三角形的方法.熟悉了解角平分線的定義以及等腰三角形的判定方法是解題的關(guān)鍵所在.20、(1)y=﹣x2+x+2;(2)滿足條件的點P的坐標為(,)或(,﹣)或(,5)或(,﹣5).【解析】

(1)利用待定系數(shù)法求拋物線的表達式;(2)使△BMP與△ABD相似的有三種情況,分別求出這三個點的坐標.【詳解】(1)∵拋物線與x軸交于點A(﹣1,0),B(4,0),∴設拋物線的解析式為y=a(x+1)(x﹣4),∵拋物線與y軸交于點C(0,2),∴a×1×(﹣4)=2,∴a=﹣,∴拋物線的解析式為y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如圖1,連接CD,∵拋物線的解析式為y=﹣x2+x+2,∴拋物線的對稱軸為直線x=,∴M(,0),∵點D與點C關(guān)于點M對稱,且C(0,2),∴D(3,﹣2),∵MA=MB,MC=MD,∴四邊形ACBD是平行四邊形,∵A(﹣1,0),B(4,0),C(3,﹣22),∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,設點P(,m),∴MP=|m|,∵M(,0),B(4,0),∴BM=,∵△BMP與△ABD相似,∴①當△BMP∽ADB時,∴,∴,∴m=±,∴P(,)或(,﹣),②當△BMP∽△BDA時,,∴,∴m=±5,∴P(,5)或(,﹣5),即:滿足條件的點P的坐標為P(,)或(,﹣)或(,5)或(,﹣5).【點睛】本題考查了二次函數(shù)的應用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應用.21、見解析【解析】(1)如圖:(2)連接AD、CF,則這兩條線段之間的關(guān)系是AD=CF,且AD∥CF.22、(1)OE=;(2)陰影部分的面積為【解析】

(1)由題意不難證明OE為△ABC的中位線,要求OE的長度即要求BC的長度,根據(jù)特殊角的三角函數(shù)即可求得;(2)由題意不難證明△COE≌△AFE,進而

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論