山東省淄博市博山石馬中學(xué)高一數(shù)學(xué)理上學(xué)期摸底試題含解析_第1頁(yè)
山東省淄博市博山石馬中學(xué)高一數(shù)學(xué)理上學(xué)期摸底試題含解析_第2頁(yè)
山東省淄博市博山石馬中學(xué)高一數(shù)學(xué)理上學(xué)期摸底試題含解析_第3頁(yè)
山東省淄博市博山石馬中學(xué)高一數(shù)學(xué)理上學(xué)期摸底試題含解析_第4頁(yè)
山東省淄博市博山石馬中學(xué)高一數(shù)學(xué)理上學(xué)期摸底試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省淄博市博山石馬中學(xué)高一數(shù)學(xué)理上學(xué)期摸底試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.已知集合A={x︱x>-2}且A∪B=A,則集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.{-1,0,1,2,3}參考答案:D【詳解】A、B={x|x>2或x<-2},

∵集合A={x|x>-2},

∴A∪B={x|x≠-2}≠A,不合題意;

B、B={x|x≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合題意;

C、B={y|y≥-2},

∵集合A={x|x>-2},

∴A∪B={x|x≥-2}=B,不合題意;

D、若B={-1,0,1,2,3},

∵集合A={x|x>-2},

∴A∪B={x|x>-2}=A,與題意相符,

故選:D.2.設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題錯(cuò)誤的是()A.若m⊥α,n∥α,則m⊥n B.若m⊥α,n∥m,n?β,則α⊥βC.若m⊥α,n⊥β,α∥β,則m∥n D.若m∥α,m∥β,則α∥β參考答案:D【考點(diǎn)】平面與平面之間的位置關(guān)系.【分析】根據(jù)空間直線和平面平行和垂直的判定定理和性質(zhì)定理分別進(jìn)行判斷即可.【解答】解:A.若m⊥α,n∥α,則m⊥n成立.B.若m⊥α,n∥m,則n⊥α,∵n?β,∴α⊥β成立.C.若m⊥α,α∥β,∴m⊥β,∵n⊥β,∴m∥n成立.D.若m∥α,m∥β,則α∥β或相交,故D錯(cuò)誤,故選:D3.(7)函數(shù)是

(

)

(A)周期為的奇函數(shù)

(B)周期為的偶函數(shù)(C)周期為2的奇函數(shù)

(D)周期為2的偶函數(shù)參考答案:A略4.已知函數(shù)的定義域?yàn)?,且為奇函?shù),當(dāng)時(shí),,則的所有根之和等于(

)A.4 B.5 C.6 D.12參考答案:A【分析】由題可知函數(shù)的圖像關(guān)于對(duì)稱,求出時(shí)函數(shù)的解析式,然后由韋達(dá)定理求解。【詳解】因?yàn)闉槠婧瘮?shù),所以圖像關(guān)于對(duì)稱,所以函數(shù)的圖像關(guān)于對(duì)稱,即當(dāng)時(shí),,所以當(dāng)時(shí),當(dāng)時(shí),可得當(dāng)時(shí),可得所以的所有根之和為故選A【點(diǎn)睛】本題考查函數(shù)的奇偶性以及求函數(shù)的解析式,解題的關(guān)鍵是得出函數(shù)的圖像關(guān)于對(duì)稱,屬于一般題。5.已知函數(shù),則A.是奇函數(shù),且在R上是增函數(shù)

B.是偶函數(shù),且在R上是增函數(shù)C.是奇函數(shù),且在R上是減函數(shù)

D.是偶函數(shù),且在R上是減函數(shù)參考答案:A6.已知0<a<1,b<-1,函數(shù)f(x)=ax+b的圖象不經(jīng)過(guò):()A.第一象限

B.第二象限

C.第三象限

D.第四象限參考答案:A7.已知的定義域?yàn)?,則的定義域?yàn)椋?/p>

)A.

B.

C.

D.參考答案:C略8.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為(

)A.32 B. C.16 D.參考答案:D【分析】根據(jù)三視圖判斷出幾何體是由一個(gè)三棱錐和一個(gè)三棱柱構(gòu)成,利用錐體和柱體的體積公式計(jì)算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個(gè)三棱錐和三棱柱構(gòu)成,該多面體體積為.故選D.【點(diǎn)睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎(chǔ)題.9.函數(shù)單調(diào)遞增區(qū)間為

(

)

(A)

(B)

(C)

(D)參考答案:D略10.已知定義在R上的增函數(shù)f(x),滿足f(-x)+f(x)=0,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的值 () A.一定大于0

B.一定小于0

C.等于0

D.正負(fù)都有可能參考答案:A略二、填空題:本大題共7小題,每小題4分,共28分11.函數(shù)y=的值域是 。參考答案:[0,1]12.已知為原點(diǎn),點(diǎn)的坐標(biāo)分別為其中常數(shù),點(diǎn)在線段上,且,則的最大值為

.參考答案:13.小米和蘭亭定于早10點(diǎn)至11點(diǎn)在鐘樓書店門口見面,為避免浪費(fèi)時(shí)間,約定先到者只等10分鐘,他們見面的概率為____________.參考答案:略14.已知某個(gè)幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是(cm).參考答案:考點(diǎn):由三視圖求面積、體積.

專題:計(jì)算題;空間位置關(guān)系與距離.分析:根據(jù)幾何體的三視圖,得出該幾何體是底面為矩形的直四棱錐;結(jié)合圖中數(shù)據(jù)即可求出它的體積.解答:解:根據(jù)幾何體的三視圖,得:該幾何體是底面為矩形,高為=的直四棱錐;且底面矩形的長(zhǎng)為4,寬為2,所以,該四棱錐的體積為V=×4×2×=.故答案為:.點(diǎn)評(píng):本題考查了利用三視圖求空間幾何體的體積的應(yīng)用問(wèn)題,是基礎(chǔ)題目.15.已知,向量與垂直,則實(shí)數(shù)的值為

參考答案:向量=(-3-1,2),=(-1,2),因?yàn)閮蓚€(gè)向量垂直,故有(-3-1,2)×(-1,2)=0,即3+1+4=0,解得:=,16.某校高三年級(jí)學(xué)生年齡分布在17歲、18歲、19歲的人數(shù)分別為500、400、100,現(xiàn)通過(guò)分層抽樣從上述學(xué)生中抽取一個(gè)樣本容量為的樣本,已知每位學(xué)生被抽到的概率都為0.2,則

.參考答案:200略17.設(shè),是兩個(gè)不共線的向量,已知,,若A,B,C三點(diǎn)共線,則實(shí)數(shù)m=

.參考答案:6【考點(diǎn)】平行向量與共線向量.【分析】由已知得,即2+m=,由此能求出實(shí)數(shù)m.【解答】解:∵是兩個(gè)不共線的向量,,若A,B,C三點(diǎn)共線,∴,即2+m=,∴,解得實(shí)數(shù)m=6.故答案為:6.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟18.在△ABC中,,,.(1)求證:△ABC為直角三角形;(2)若△ABC外接圓的半徑為1,求△ABC的周長(zhǎng)的取值范圍.參考答案:(1)見解析;(2)【分析】(1)根據(jù)題目所給兩個(gè)向量的數(shù)量積列方程,利用三角形內(nèi)角和定理、兩角和的正弦公式進(jìn)行化簡(jiǎn),由此證明三角形為直角三角形.(2)將邊長(zhǎng)轉(zhuǎn)化為角的形式,由此求得三角形周長(zhǎng)的取值范圍.【詳解】(1)由于,化簡(jiǎn)得,由于在三角形中,所以,故,所以三角形為直角三角形.(2)設(shè),由于三角形是直角三角形,所以三角形周長(zhǎng)為,由于,所以,所以.【點(diǎn)睛】本小題主要考查利用三角形內(nèi)角和定理、兩角和的正弦定理判斷三角形形狀,考查三角形周長(zhǎng)的取值范圍的求法,屬于中檔題.19.已知函數(shù)f(x)=Asin(ωx+φ)的一部分圖象如圖所示,(其中A>0,ω>0,)(1)求函數(shù)f(x)的解析式并求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,若f(A)=1,f(B)=﹣1,|AB|=2,求△ABC的面積.參考答案:【考點(diǎn)】由y=Asin(ωx+φ)的部分圖象確定其解析式;函數(shù)y=Asin(ωx+φ)的圖象變換.【分析】(1)根據(jù)三角函數(shù)的圖象求出A,ω和φ的值即可得到結(jié)論.(2)根據(jù)條件求出A,B的值,結(jié)合三角形的面積公式進(jìn)行求解即可.【解答】解:(Ⅰ)由圖可知:A=2,=﹣(﹣)=,則T=π=,即ω=2,由五點(diǎn)對(duì)應(yīng)法得2×+φ=,即φ=,∴f(x)=2sin(2x+),當(dāng)2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,故函數(shù)的增區(qū)間為[kπ﹣,kπ+],k∈z.(Ⅱ)在△ABC中,若f(A)=1,f(B)=﹣1,則f(A)=2sin(2A+)=1,f(B)=2sin(2B+)=﹣1,則sin(2A+)=,sin(2B+)=﹣,即2A+=,2B+=,得A=,B=,∵|AB|=2,∴△ABC的面積為=2.20.有一長(zhǎng)為24米的籬笆,一面利用墻(墻最大長(zhǎng)度是10米)圍成一個(gè)矩形花圃,設(shè)該花圃寬AB為x米,面積是y平方米,(1)求出y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;(2)當(dāng)花圃一邊AB為多少米時(shí),花圃面積最大?并求出這個(gè)最大面積?參考答案:【考點(diǎn)】函數(shù)解析式的求解及常用方法.【專題】函數(shù)的性質(zhì)及應(yīng)用.【分析】(1)表示出長(zhǎng)和寬,從而求出函數(shù)的表達(dá)式,(2)將函數(shù)的表達(dá)式寫出頂點(diǎn)式,從而解決問(wèn)題.【解答】解:(1)如圖示:,∵0<24﹣2x≤10,∴7≤x<12,∴y=x(24﹣2x)=﹣2x2+24x,(7≤x<12),(2)由(1)得:y=﹣2x2+24x=﹣2(x﹣6)2+72,∴AB=6m時(shí),y最大為72m2.【點(diǎn)評(píng)】本題考查了求函數(shù)的解析式問(wèn)題,函數(shù)的定義域問(wèn)題,考查函數(shù)的最值問(wèn)題

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論