版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
April2024
Mcsey
&company
AIbyMckinsey
QuantumBlack
McKinseyExplainers
WhatisAI(artificialintelligence)?
Artificialintelligenceisamachine’sabilitytoperformsomecognitivefunctionsweusuallyassociatewithhumanminds.
Humansandmachines:amatchmadein
productivity
heaven.Ourspecieswouldn’thave
gottenveryfarwithoutourmechanizedworkhorses.Fromthewheelthatrevolutionizedagricultureto
thescrewthatheldtogetherincreasinglycomplexconstructionprojectstotherobot-enabled
assemblylinesoftoday,machineshavemadelifeasweknowitpossible.Andyet,despitetheir
seeminglyendlessutility,humanshavelongfearedmachines—morespecifically,thepossibilitythat
machinesmightsomeday
acquirehumanintelligence
andstrikeoutontheirown.
Butwetendtoviewthepossibilityofsentient
machineswithfascinationaswellasfear.This
curiosityhashelpedturnsciencefictionintoactualscience.Twentieth-centurytheoreticians,like
computerscientistandmathematicianAlanTuring,envisionedafuturewheremachinescould
performfunctionsfasterthanhumans.Thework
ofTuringandotherssoonmadethisareality.
Personalcalculatorsbecamewidelyavailableinthe1970s,andby2016,theUScensusshowedthat
89percentofAmericanhouseholds
hadacomputer.Machines—smartmachinesatthat—arenowjust
anordinarypartofourlivesandculture.
Thosesmartmachinesarealsogettingfasterandmorecomplex.Somecomputershavenowcrossedthe
exascale
threshold,meaningtheycanperformasmanycalculationsinasinglesecondasan
individualcouldin
31,688,765,000years
.Andbeyondcomputation,whichmachineshavelongbeenfasteratthanwehave,computersandotherdevicesare
nowacquiringskillsandperceptionthatwereonceuniquetohumansandafewotherspecies.
AIisamachine’sabilitytoperformthecognitive
functionsweassociatewithhumanminds,suchasperceiving,reasoning,learning,interactingwiththeenvironment,problem-solving,andevenexercisingcreativity.You’veprobablyinteractedwithAIevenifyoudon’trealizeit—voiceassistantslikeSiriand
AlexaarefoundedonAItechnology,asaresomecustomerservicechatbotsthatpopuptohelp
younavigatewebsites.
AppliedAI
—simply,artificialintelligenceappliedtoreal-worldproblems—hasseriousimplicationsfor
thebusinessworld.Byusingartificialintelligence,
companieshavethepotentialtomakebusiness
moreefficientandprofitable.Butultimately,the
valueofAIisn’tinthesystemsthemselves.Rather,it’sinhowcompaniesusethesesystemstoassist
humans—andtheirabilityto
explain
toshareholdersandthepublicwhatthesesystemsdo—inaway
thatbuildstrustandconfidence.
FormoreaboutAI,itshistory,itsfuture,andhowtoapplyitinbusiness,readon.
Learnmoreabout
QuantumBlack,AIbyMcKinsey.
Beyondcomputation,computersand
otherdevicesarenowacquiringskills
andperceptionthatwereonceuniquetohumansandafewotherspecies.
WhatisAI(artificialintelligence)?2
Whatismachinelearning?
Machinelearningisaformofartificialintelligence
thatcanadapttoawiderangeofinputs,including
largesetsofhistoricaldata,synthesizeddata,or
humaninputs.(Somemachinelearningalgorithmsarespecializedintrainingthemselvestodetect
patterns;thisiscalleddeeplearning.SeeExhibit1.)Thesealgorithmscandetectpatternsandlearn
howtomakepredictionsandrecommendationsbyprocessingdata,ratherthanbyreceivingexplicit
programminginstruction.Somealgorithmscanalsoadaptinresponsetonewdataandexperiences
toimproveovertime.
Thevolumeandcomplexityofdatathatisnowbeing
generated,toovastforhumanstoprocessand
applyefficiently,hasincreasedthepotentialof
machinelearning,aswellastheneedforit.Intheyearssinceitswidespreaddeployment,which
beganinthe1970s,machinelearninghashadanimpactonanumberofindustries,including
achievementsin
medical-imaginganalysis
andhigh-resolutionweatherforecasting.
Whatisdeeplearning?
Deeplearningisamoreadvancedversionofmachinelearningthatisparticularlyadept
atprocessingawiderrangeofdataresources(textaswellasunstructureddataincludingimages),
requiresevenlesshumanintervention,andcanoftenproducemoreaccurateresultsthan
traditionalmachinelearning.Deeplearninguses
neuralnetworks—basedonthe
waysneurons
interactinthehumanbrain
—toingestdataand
processitthroughmultipleneuronlayersthat
recognizeincreasinglycomplexfeaturesofthedata.Forexample,anearlylayermightrecognize
somethingasbeinginaspecificshape;buildingonthisknowledge,alaterlayermightbeableto
identifytheshapeasastopsign.Similartomachinelearning,deeplearningusesiterationtoself-correctandimproveitspredictioncapabilities.Forexample,onceit“l(fā)earns”whatastopsignlookslike,itcan
recognizeastopsigninanewimage.
Learnmoreabout
QuantumBlack,AIbyMcKinsey.
Exhibit1
Artiicialintelligenceisamachine’sabilitytoperformsomecognitivefunctionsweusuallyassociatewithhumanminds.
Theevolutionofartiicialintelligence
Artiicialintelligence
Thescienceand
engineeringof
makingintelligent
machines
AIisthebroadieldofdevelopingmachinesthatcanreplicate
humanbehavior,
includingtasksrelatedtoperceiving,
reasoning,learning,andproblem-solving.
Machinelearning
Amajor
breakthrough
inachievingAI
Machinelearning
algorithmsdetect
patternsinlarge
datasetsandlearntomakepredictionsbyprocessingdata,ratherthanby
receivingexplicit
programming
instructions.
Deeplearning
Anadvanced
branchofmachine
learning
Deeplearningusesneuralnetworks,inspiredbythe
waysneuronsinteractinthehumanbrain,toingestdataandprocessitthrough
multipleiterationsthatlearnincreasinglycomplex
featuresofthedataand
makeincreasingly
sophisticatedpredictions.
GenerativeAI
Anadvancedbranch
ofdeeplearning
GenerativeAIisabranchofdeeplearningthatuses
exceptionallylargeneural
networkscalledlarge
languagemodels(with
hundredsofbillionsofneurons)
thatcanlearnespecially
abstractpatterns.Language
modelsappliedtointerpretandcreatetext,video,images,and
dataareknownasgenerativeAI.
McKinsey&Company
WhatisAI(artificialintelligence)?3
Thevolumeandcomplexityofdatathatisnowbeinggenerated,toovastfor
humanstoprocessandapplyefficiently,hasincreasedthepotentialofmachinelearning,aswellastheneedforit.
WhatisgenerativeAI?
GenerativeAI
(genAI)isanAImodelthatgeneratescontentinresponsetoaprompt.It’sclearthat
generativeAItoolslikeChatGPTandDALL-E(atoolforAI-generatedart)havethepotentialtochange
how
arangeofjobs
areperformed.Muchisstill
unknownaboutgenAI’spotential,butthereare
somequestionswecananswer—likehowgenAI
modelsarebuilt,whatkindsofproblemstheyare
bestsuitedtosolve,andhowtheyfitintothebroadercategoryofAIandmachinelearning.
FormoreongenerativeAIandhowitstandsto
affectbusinessandsociety,checkoutourExplainer“
WhatisgenerativeAI?
”
WhatisthehistoryofAI?
Theterm“artificialintelligence”was
coinedin1956
bycomputerscientistJohnMcCarthyforaworkshopatDartmouth.Buthewasn’tthefirsttowriteabout
theconceptswenowdescribeasAI.AlanTuring
introducedtheconceptofthe“
imitationgame
”ina1950paper.That’sthetestofamachine’sability
toexhibitintelligentbehavior,nowknownasthe
“Turingtest.”Hebelievedresearchersshouldfocusonareasthatdon’trequiretoomuchsensingandaction,thingslikegamesandlanguagetranslation.Researchcommunitiesdedicatedtoconcepts
likecomputervision,naturallanguageunderstanding,andneuralnetworksare,inmanycases,several
decadesold.
MITphysicistRodneyBrooks
shared
detailsonthefourpreviousstagesofAI:
—SymbolicAI(1956).SymbolicAIisalsoknownasclassicalAI,orevenGOFAI(goodold-fashionedAI).Thekeyconcepthereistheuseofsymbolsandlogicalreasoningtosolveproblems.For
example,weknow
aGermanshepherdisadog
,whichisamammal;allmammalsarewarm-
blooded;therefore,aGermanshepherdshouldbewarm-blooded.
ThemainproblemwithsymbolicAIisthathumansstillneedtomanuallyencodetheirknowledge
oftheworldintothesymbolicAIsystem,ratherthanallowingittoobserveandencode
relationshipsonitsown.Asaresult,symbolicAIsystemsstrugglewithsituationsinvolving
real-worldcomplexity.Theyalsolacktheabilitytolearnfromlargeamountsofdata.
SymbolicAIwasthedominantparadigmofAIresearchuntilthelate1980s.
—Neuralnetworks(1954,1969,1986,2012).
Neuralnetworksarethetechnologybehind
therecentexplosivegrowthofgenAI.Looselymodelingthe
waysneuronsinteractinthe
humanbrain
,neuralnetworksingestdataandprocessitthroughmultipleiterationsthatlearnincreasinglycomplexfeaturesofthedata.Theneuralnetworkcanthenmakedeterminations
WhatisAI(artificialintelligence)?4
aboutthedata,learnwhetheradeterminationiscorrect,andusewhatithaslearnedtomake
determinationsaboutnewdata.Forexample,onceit“l(fā)earns”whatanobjectlookslike,itcanrecognizetheobjectinanewimage.
Neuralnetworkswerefirstproposedin1943
inanacademicpaperbyneurophysiologist
WarrenMcCullochandlogicianWalterPitts.
Decadeslater,in1969,twoMITresearchers
mathematicallydemonstratedthatneural
networkscouldperformonlyverybasictasks.In1986,therewasanotherreversal,when
computerscientistandcognitivepsychologistGeoffreyHintonandcolleaguessolvedthe
neuralnetworkproblempresentedbytheMITresearchers.Inthe1990s,computerscientistYannLeCunmademajoradvancementsin
neuralnetworks’useincomputervision,whileJürgenSchmidhuberadvancedtheapplication
ofrecurrentneuralnetworksasusedinlanguageprocessing.
In2012,Hintonandtwoofhisstudents
highlightedthepowerofdeeplearning.They
appliedHinton’salgorithmtoneuralnetworks
withmanymorelayersthanwastypical,
sparkinganewfocusondeepneuralnetworks.
ThesehavebeenthemainAIapproachesof
recentyears.
—Traditionalrobotics(1968).Duringthefirstfew
decadesofAI,researchersbuiltrobotstoadvance
research.Somerobotsweremobile,moving
aroundonwheels,whileotherswerefixed,with
articulatedarms.Robotsusedtheearliest
attemptsatcomputervisiontoidentifyand
navigatethroughtheirenvironmentsorto
understandthegeometryofobjectsand
maneuverthem.Thiscouldincludemoving
aroundblocksofvariousshapesandcolors.
Mostoftheserobots,justliketheonesthathave
beenusedinfactoriesfordecades,relyon
highlycontrolledenvironmentswiththoroughly
scriptedbehaviorsthattheyperformrepeatedly.
Casestudy:VistraandtheMartinLakePowerPlant
Vistraisalargepowerproducerinthe
UnitedStates,operatingplantsin12stateswithacapacitytopowernearly20millionhomes.Vistrahascommittedtoachievingnet-zeroemissionsby2050.Insupport
ofthisgoal,aswellastoimproveoverall
efficiency,
QuantumBlack,AIbyMcKinsey
workedwithVistratobuildanddeploy
anAI-poweredheatrateoptimizer(HRO)atoneofitsplants.
“Heatrate”isameasureofthethermal
efficiencyoftheplant;inotherwords,it’s
theamountoffuelrequiredtoproduce
eachunitofelectricity.Toreachtheoptimalheatrate,plantoperatorscontinuously
monitorandtunehundredsofvariables,suchassteamtemperatures,pressures,oxygenlevels,andfanspeeds.
VistraandaMcKinseyteam,includingdatascientistsandmachinelearningengineers,builtamultilayeredneuralnetworkmodel.Themodelcombedthroughtwoyears’
worthofdataattheplantandlearned
whichcombinationoffactorswouldattain
themostefficientheatrateatanypoint
intime.Whenthemodelswereaccurateto
99percentorhigherandrunthrougha
rigoroussetofreal-worldtests,theteam
convertedthemintoanAI-poweredenginethatgeneratesrecommendationsevery
30minutesforoperatorstoimprovethe
plant’sheatrateefficiency.Oneseasonedoperationsmanageratthecompany’s
plantinOdessa,Texas,said,“Thereare
thingsthattookme20yearstolearnaboutthesepowerplants.Thismodellearnedtheminanafternoon.”
Overall,theAI-poweredHROhelpedVistraachievethefollowing:
—approximately1.6millionmetrictonsofcarbonabatedannually
—67powergeneratorsoptimized
—$60millionsavedinaboutayear
ReadmoreabouttheVistrastory
here
.
WhatisAI(artificialintelligence)?5
TheyhavenotcontributedsignificantlytotheadvancementofAIitself.
Buttraditionalroboticsdidhavesignificant
impactinonearea,throughaprocesscalled
“simultaneouslocalizationandmapping”(SLAM).SLAMalgorithmshelpedcontributetoself-
drivingcarsandareusedinconsumerproductslikevacuumcleaningrobotsandquadcopter
drones.Today,thisworkhasevolvedinto
behavior-basedrobotics,alsoreferredtoashaptictechnologybecauseitrespondsto
humantouch.
—Behavior-basedrobotics(1985).Inthereal
world,therearen’talwaysclearinstructionsfornavigation,decisionmaking,orproblem-solving.Insects,researchersobserved,navigatevery
well(andareevolutionarilyverysuccessful)withfewneurons.Behavior-basedrobotics
researcherstookinspirationfromthis,lookingforwaysrobotscouldsolveproblemswith
partialknowledgeandconflictinginstructions.Thesebehavior-basedrobotsareembedded
withneuralnetworks.
Learnmoreabout
QuantumBlack,AIbyMcKinsey.
Whatisartificialgeneralintelligence?
Theterm“artificialgeneralintelligence”(AGI)wascoinedtodescribeAIsystemsthatpossess
capabilitiescomparabletothoseofahuman
.Intheory,AGIcouldsomedayreplicatehuman-like
cognitiveabilitiesincludingreasoning,problem-solving,perception,learning,andlanguage
comprehension.Butlet’snotgetaheadofourselves:thekeywordhereis“someday.”Mostresearchers
andacademicsbelievewearedecadesawayfromrealizingAGI;someevenpredictwewon’tsee
AGIthiscentury,orever.RodneyBrooks,anMIT
roboticistandcofounderofiRobot,doesn’tbelieveAGIwillarriveuntil
theyear2300
.
ThetimingofAGI’semergencemaybeuncertain.Butwhenitdoesemerge—anditlikelywill—
it’sgoingtobeaverybigdeal,ineveryaspectof
ourlives.Executivesshouldbeginworkingto
understandthepathtomachinesachievinghuman-levelintelligencenowandmakingthetransitiontoamoreautomatedworld.
FormoreonAGI,includingthefourpreviousattemptsatAGI,readour
Explainer.
WhatisnarrowAI?
NarrowAIistheapplicationofAItechniquestoa
specificandwell-definedproblem,suchaschatbotslikeChatGPT,algorithmsthatspotfraudincredit
cardtransactions,andnatural-language-processingenginesthatquicklyprocessthousandsoflegal
documents.MostcurrentAIapplicationsfallinto
thecategoryofnarrowAI.AGIis,bycontrast,AIthat’sintelligentenoughtoperformabroadrangeoftasks.
Learnmoreabout
QuantumBlack,AIbyMcKinsey.
HowistheuseofAIexpanding?
AIisabigstoryforallkindsofbusinesses,butsomecompaniesareclearlymoving
aheadofthepack
.
OurstateofAIin2022surveyshowedthatadoptionofAImodelshasmorethandoubledsince2017—
andinvestmenthasincreasedapace.What’smore,thespecificareasinwhichcompaniesseevalue
fromAIhaveevolved,frommanufacturingandrisktothefollowing:
—marketingandsales
—productandservicedevelopment
—strategyandcorporatefinance
Onegroupofcompaniesispullingaheadofits
competitors.Leadersoftheseorganizations
consistentlymakelargerinvestmentsinAI,leveluptheirpracticestoscalefaster,andhireandupskill
thebestAItalent.Morespecifically,theylinkAI
strategytobusinessoutcomesand“
industrialize
”AIoperationsbydesigningmodulardataarchitecturethatcanquicklyaccommodatenewapplications.
WhatisAI(artificialintelligence)?6
WhatarethelimitationsofAI
models?Howcanthesepotentiallybeovercome?
WehaveyettoseethelongtaileffectofgenAI
models.Thismeanstherearesomeinherentrisksinvolvedinusingthem—bothknownandunknown.
TheoutputsgenAImodelsproducemayoften
soundextremelyconvincing.Thisisbydesign.Butsometimestheinformationtheygenerateisjust
plainwrong.Worse,sometimesit’sbiased(becauseit’sbuiltonthegender,racial,andotherbiasesof
theinternetandsocietymoregenerally).
Itcanalsobemanipulatedtoenableunethicalor
criminalactivity.SincegenAImodelsburstontothescene,organizationshavebecomeawareofuserstryingto“jailbreak”themodels—thatmeanstryingtogetthemtobreaktheirownrulesanddeliver
biased,harmful,misleading,orevenillegalcontent.
GenAIorganizationsarerespondingtothisthreatintwoways:foronething,they’recollecting
feedbackfromusersoninappropriatecontent.They’realsocombingthroughtheirdatabases,
identifyingpromptsthatledtoinappropriatecontent,
andtrainingthemodelagainstthesetypesofgenerations.
Butawarenessandevenactiondon’tguaranteethatharmfulcontentwon’tslipthedragnet.
OrganizationsthatrelyongenAImodelsshouldbeawareofthereputationalandlegalrisks
involvedinunintentionallypublishingbiased,offensive,orcopyrightedcontent.
Theseriskscanbemitigated,however,inafewways.“Wheneveryouuseamodel,”saysMcKinseypartnerMarieElHoyek,“youneedtobeableto
counter
biases
andinstructitnottouseinappropriateor
flawedsources,orthingsyoudon’ttrust.”How?Foronething,it’scrucialtocarefullyselecttheinitial
datausedtotrainthesemodelstoavoidincluding
toxicorbiasedcontent.Next,ratherthanemployinganoff-the-shelfgenAImodel,organizations
couldconsiderusingsmaller,specializedmodels.
Organizationswithmoreresourcescouldalso
customizeageneralmodelbasedontheirowndatatofittheirneedsandminimizebiases.
It’salsoimportanttokeepahumanintheloop(thatis,tomakesurearealhumancheckstheoutput
ofagenAImodelbeforeitispublishedorused)andavoidusinggenAImodelsforcriticaldecisions,
suchasthoseinvolvingsignificantresourcesorhumanwelfare.
Itcan’tbeemphasizedenoughthatthisisanewfield.Thelandscapeofrisksandopportunitiesislikely
tocontinuetochangerapidlyinthecomingyears.AsgenAIbecomesincreasinglyincorporated
intobusiness,society,andourpersonallives,wecanalsoexpectanewregulatoryclimatetotake
shape.Asorganizationsexperiment—andcreatevalue—withthesetools,leaderswilldowelltokeepafingeronthepulseofregulationandrisk.
Learnmoreabout
QuantumBlack,AIbyMcKinsey.
WhatistheAIBillofRights?
TheBlueprintforanAIBillofRights,preparedby
theUSgovernmentin2022,providesaframeworkforhowgovernment,technologycompanies,and
citizenscancollectivelyensuremoreaccountable
AI.AsAIhasbecomemoreubiquitous,
concerns
havesurfaced
aboutapotentiallackoftransparencysurroundingthefunctioningofgenAIsystems,thedatausedtotrainthem,issuesofbiasandfairness,potentialintellectualpropertyinfringements,
privacyviolations,andmore.TheBlueprintcomprisesfiveprinciplesthat
theWhiteHousesays
should
“guidethedesign,use,anddeploymentofautomatedsystemstoprotect[users]intheageofartificial
intelligence.”Theyareasfollows:
—Therighttosafeandeffectivesystems.Systemsshouldundergopredeploymenttesting,risk
identificationandmitigation,andongoing
monitoringtodemonstratethattheyareadheringtotheirintendeduse.
—Protectionsagainstdiscriminationbyalgorithms.Algorithmicdiscriminationiswhenautomated
systemscontributetounjustifieddifferent
treatmentofpeoplebasedontheirrace,color,ethnicity,sex,religion,age,andmore.
WhatisAI(artificialintelligence)?7
—Protectionsagainstabusivedatapractices,viabuilt-insafeguards.Usersshouldalsohave
agencyoverhowtheirdataisused.
—Therighttoknowthatanautomatedsystemisbeingused,andaclearexplanationofhow
andwhyitcontributestooutcomesthataffecttheuser.
—Therighttooptout,andaccesstoahumanwhocanquicklyconsiderandfixproblems.
Atpresent,morethan60countriesorblocshave
nationalstrategiesgoverningtheresponsible
useofAI(Exhibit2).TheseincludeBrazil,China,theEuropeanUnion,Singapore,SouthKorea,and
theUnitedStates.Theapproachestakenvaryfromguidelines-basedapproaches,suchasthe
BlueprintforanAIBillofRightsintheUnitedStates,
tocomprehensiveAIregulationsthatalignwith
existingdataprotectionandcybersecurity
regulations,suchastheEU’sAIAct,duein2024.
Therearealsocollaborativeeffortsbetween
countriestosetoutstandardsforAIuse.TheUS–EUTradeandTechnologyCouncilisworking
towardgreateralignmentbetweenEuropeandtheUnitedStates.TheGlobalPartnershiponArtificialIntelligence,formedin2020,has29members
includingBrazil,Canada,Japan,theUnitedStates,andseveralEuropeancountries.
EventhoughAIregulationsarestillbeingdeveloped,organizationsshouldactnowtoavoidlegal,
reputational,organizational,andfinancialrisks.Inanenvironmentofpublicconcern,amisstep
couldbecostly.Herearefourno-regrets,preemptiveactionsorganizationscanimplementtoday:
—Transparency.Createaninventoryofmodels,classifyingtheminaccordancewith
regulation,andrecordallusageacrosstheorganizationthatiscleartothoseinside
andoutsidetheorganization.
—Governance.ImplementagovernancestructureforAIandgenAIthatensuressufficient
oversight,authority,andaccountabilityboth
withintheorganizationandwiththird
partiesandregulators.
—Data,model,andtechnologymanagement.
?Datamanagement.Properdata
managementincludesawarenessofdatasources,dataclassification,data
qualityandlineage,intellectualproperty,andprivacymanagement.
?Modelmanagement.OrganizationsshouldestablishprinciplesandguardrailsforAI
developmentandusethemtoensureallAImodelsupholdfairnessandbiascontrols.
Exhibit2
RegulationsrelatedtoAIgovernancevaryaroundtheworld.
AsofNovember2023,nonexhaustive
Typeofpolicy:
Nonbindingprinciples(eg,OECD)
Japan
Singapore
UnitedArabEmirates
UnitedKingdom
.UnitedStates
Source:OECD;McKinseyanalysis
GeneralAIlegislationproposedorbeinginalized
●Brazil
Canada
China
SouthKorea
EuropeanUnion
Examplecountrieswithoutgeneral
AIlegislation
Australia
India
.NewZealand
SaudiArabia
McKinsey&Company
WhatisAI(artificialintelligence)?8
?Cybersecurityandtechnologymanagement.Establishstrongcybersecurityand
technologytoensureasecureenvironmentwhereunauthorizedaccessormisuse
isprevented.
—Individualrights.MakeusersawarewhentheyareinteractingwithanAIsystem,andprovideclearinstructionsforuse.
Howcanorganizationsscaleup
theirAIeffortsfromadhocprojectstofullintegration?
MostorganizationsaredippingatoeintotheAI
pool—notcannonballing.Slowprogresstowardwidespreadadoptionislikelyduetocultural
andorganizationalbarriers.Butleaderswho
effectivelybreakdownthesebarrierswillbebestplacedtocapturetheopportunitiesoftheAIera.
And—crucially—companiesthatcan’ttakefull
advantageofAIarealreadybeing
sidelined
bythosethatcan,inindustrieslikeautomanufacturing
andfinancialservices.
ToscaleupAI,organizationscanmake
three
majorshifts
:
1.Movefromsiloedworktointerdisciplinary
collaboration.AIprojectsshouldn’tbelimitedtodiscretepocketsoforganizations.Rather,
AIhasthebiggestimpactwhenit’semployedbycross-functionalteamswithamixofskills
andperspectives,enablingAItoaddressbroadbusinesspriorities.
2.Empowerfrontlinedata-based
decisionmaking
.AIhasthepotentialtoenablefaster,better
decisionsatalllevelsofanorganization.Butforthistowork,peopleatalllevelsneedtotrustthealgorithms’suggestionsandfeelempoweredto
makedecisions.(Equally,peopleshouldbeabletooverridethealgorithmormakesuggestionsforimprovementwhennecessary.)
3.Adoptandbolsteran
agile
mindset.Theagiletest-and-learnmindsetwillhelpreframe
mistakesassourcesofdiscovery,allayingthefearoffailureandspeedingupdevelopment.
Learnmoreabout
QuantumBlack,AIbyMcKinsey,
andcheckout
AI-relatedjobopportunities
ifyou’reinterestedinworkingatMcKinsey.
Articlesreferenced:
—
“AsgenAIadvances,regulators—andrisk
functions—rushtokeeppace
,”December21,2023,AndreasKremer,
AngelaLuget
,
Daniel
Mikkelsen
,
HenningSoller
,MalinStrandell-Jansson,andSheilaZingg
—“
WhatisgenerativeAI?
,”January19,2023
—“
Techhighlightsfrom2022—ineightcharts
,”December22,2022
—“
GenerativeAIishere:HowtoolslikeChatGPT
couldchangeyourbusiness
,”December20,2022,
MichaelChui
,
RogerRoberts
,and
LareinaYee
—“
ThestateofAIin2022—andahalfdecadein
review
,”Decembe
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年湖北城市建設(shè)職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 二零二五年度智能汽車典當(dāng)借款管理協(xié)議3篇
- 2020中考英語(yǔ)復(fù)習(xí)方案第一篇教材考點(diǎn)梳理第20課時(shí)Units4九上課件牛津譯林版
- 義務(wù)教育課程標(biāo)準(zhǔn)道德與法治
- 2024年瀘州醫(yī)療器械職業(yè)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 二零二五年度綠色農(nóng)產(chǎn)品倉(cāng)儲(chǔ)與銷售合作合同3篇
- 2024年阜新市婦幼保健院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2024年江西陶瓷工藝美術(shù)職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 2024年江蘇農(nóng)牧科技職業(yè)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 2024年昆明工業(yè)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 臨時(shí)占道交通組織方案
- 汽車吊接地比壓計(jì)算
- 某10kv線路遷改施工方案
- 復(fù)旦大學(xué)本科留學(xué)生入學(xué)考試語(yǔ)文樣題
- 食管裂孔疝手術(shù)同意書
- 專業(yè)技術(shù)職務(wù)聘任表》年版
- 工地試驗(yàn)室平面布置圖
- (完整版)復(fù)變函數(shù)與積分變換公式
- 國(guó)有資產(chǎn)清查工作方案國(guó)有資產(chǎn)清查報(bào)告
- 行政處罰普通程序流程圖
- 煤礦火災(zāi)防治
評(píng)論
0/150
提交評(píng)論