2023-2024學(xué)年山西省臨汾市襄汾縣中考數(shù)學(xué)模擬預(yù)測題含解析_第1頁
2023-2024學(xué)年山西省臨汾市襄汾縣中考數(shù)學(xué)模擬預(yù)測題含解析_第2頁
2023-2024學(xué)年山西省臨汾市襄汾縣中考數(shù)學(xué)模擬預(yù)測題含解析_第3頁
2023-2024學(xué)年山西省臨汾市襄汾縣中考數(shù)學(xué)模擬預(yù)測題含解析_第4頁
2023-2024學(xué)年山西省臨汾市襄汾縣中考數(shù)學(xué)模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年山西省臨汾市襄汾縣中考數(shù)學(xué)模擬預(yù)測題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在某?!拔业闹袊鴫簟毖葜v比賽中,有9名學(xué)生參加決賽,他們決賽的最終成績各不相同.其中的一名學(xué)生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學(xué)生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)2.若點M(﹣3,y1),N(﹣4,y2)都在正比例函數(shù)y=﹣k2x(k≠0)的圖象上,則y1與y2的大小關(guān)系是()A.y1<y2B.y1>y2C.y1=y2D.不能確定3.如圖,在平面直角坐標系中,線段AB的端點坐標為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點,則K的值不可能是()A.-5 B.-2 C.3 D.54.拋物線經(jīng)過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.濟南市某天的氣溫:-5~8℃,則當天最高與最低的溫差為()A.13 B.3 C.-13 D.-36.下列實數(shù)中,結(jié)果最大的是()A.|﹣3| B.﹣(﹣π) C. D.37.如圖,平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=的圖象經(jīng)過點D,則k值為()A.﹣14 B.14 C.7 D.﹣78.某籃球運動員在連續(xù)7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.如圖,△ABC為等腰直角三角形,∠C=90°,點P為△ABC外一點,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.310.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣6二、填空題(本大題共6個小題,每小題3分,共18分)11.函數(shù)y=中,自變量x的取值范圍是_________.12.方程組的解一定是方程_____與_____的公共解.13.如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=10,AC=6,則DF的長為__.14.若一組數(shù)據(jù)1,2,3,的平均數(shù)是2,則的值為______.15.在?ABCD中,AB=3,BC=4,當?ABCD的面積最大時,下列結(jié)論:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正確的有_________.(填序號)16.如圖,在平面直角坐標系xOy中,四邊形ODEF和四邊形ABCD都是正方形,點F在x軸的正半軸上,點C在邊DE上,反比例函數(shù)(k≠0,x>0)的圖象過點B,E.若AB=2,則k的值為________.三、解答題(共8題,共72分)17.(8分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.18.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.19.(8分)先化簡,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.20.(8分)如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;(2)畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.21.(8分)如圖,有四張背面完全相同的紙牌A,B,C,D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A,B,C,D表示).22.(10分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN23.(12分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結(jié)BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫出AC的長.24.如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù):).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有9個人,且他們的分數(shù)互不相同,第5的成績是中位數(shù),要判斷是否進入前5名,故應(yīng)知道中位數(shù)的多少.故本題選:D.【點睛】本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關(guān)鍵.2、A【解析】

根據(jù)正比例函數(shù)的增減性解答即可.【詳解】∵正比例函數(shù)y=﹣k2x(k≠0),﹣k2<0,∴該函數(shù)的圖象中y隨x的增大而減小,∵點M(﹣3,y1),N(﹣4,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,﹣4<﹣3,∴y2>y1,故選:A.【點睛】本題考查了正比例函數(shù)圖象與系數(shù)的關(guān)系:對于y=kx(k為常數(shù),k≠0),當k>0時,y=kx的圖象經(jīng)過一、三象限,y隨x的增大而增大;當k<0時,y=kx的圖象經(jīng)過二、四象限,y隨x的增大而減小.3、B【解析】

當直線y=kx-2與線段AB的交點為A點時,把A(-2,4)代入y=kx-2,求出k=-3,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當k≤-3時直線y=kx-2與線段AB有交點;當直線y=kx-2與線段AB的交點為B點時,把B(4,2)代入y=kx-2,求出k=1,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當k≥1時直線y=kx-2與線段AB有交點,從而能得到正確選項.【詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當直線y=kx-2與線段AB有交點,且過第二、四象限時,k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當直線y=kx-2與線段AB有交點,且過第一、三象限時,k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點,則k的值不可能是-2.故選B.【點睛】本題考查了一次函數(shù)y=kx+b(k≠0)的性質(zhì):當k>0時,圖象必過第一、三象限,k越大直線越靠近y軸;當k<0時,圖象必過第二、四象限,k越小直線越靠近y軸.4、A【解析】

根據(jù)二次函數(shù)圖象所在的象限大致畫出圖形,由此即可得出結(jié)論.【詳解】∵二次函數(shù)圖象只經(jīng)過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數(shù)的性質(zhì)以及二次函數(shù)的圖象,大致畫出函數(shù)圖象,利用數(shù)形結(jié)合解決問題是解題的關(guān)鍵.5、A【解析】由題意可知,當天最高溫與最低溫的溫差為8-(-5)=13℃,故選A.6、B【解析】

正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,據(jù)此判斷即可.【詳解】根據(jù)實數(shù)比較大小的方法,可得<|-3|=3<-(-π),所以最大的數(shù)是:-(-π).故選B.【點睛】此題主要考查了實數(shù)大小比較的方法,及判斷無理數(shù)的范圍,要熟練掌握,解答此題的關(guān)鍵是要明確:正實數(shù)>0>負實數(shù),兩個負實數(shù)絕對值大的反而小.7、B【解析】過點D作DF⊥x軸于點F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點D的坐標為:(7,2),∴k,故選B.8、D【解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).9、C【解析】

過點C作,且CQ=CP,連接AQ,PQ,證明≌根據(jù)全等三角形的性質(zhì),得到根據(jù)等腰直角三角形的性質(zhì)求出PQ的長度,進而根據(jù),即可解決問題.【詳解】過點C作,且CQ=CP,連接AQ,PQ,在和中≌AP的最大值是5.故選:C.【點睛】考查全等三角形的判定與性質(zhì),三角形的三邊關(guān)系,作出輔助線是解題的關(guān)鍵.10、D【解析】

根據(jù)科學(xué)記數(shù)法的定義,科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).【詳解】解:0.0000025第一個有效數(shù)字前有6個0(含小數(shù)點前的1個0),從而.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≤1且x≠﹣1【解析】

由二次根式中被開方數(shù)為非負數(shù)且分母不等于零求解可得結(jié)論.【詳解】根據(jù)題意,得:,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.【點睛】本題考查了函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(1)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負.12、5x﹣3y=83x+8y=9【解析】

方程組的解一定是方程5x﹣3y=8與3x+8y=9的公共解.故答案為5x﹣3y=8;3x+8y=9.13、1【解析】

試題分析:如圖,延長CF交AB于點G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵點D是BC中點,∴DF是△CBG的中位線.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.14、1【解析】

根據(jù)這組數(shù)據(jù)的平均數(shù)是1和平均數(shù)的計算公式列式計算即可.【詳解】∵數(shù)據(jù)1,1,3,的平均數(shù)是1,∴,解得:.故答案為:1.【點睛】本題考查了平均數(shù)的定義,根據(jù)平均數(shù)的定義建立方程求解是解題的關(guān)鍵.15、①②④【解析】

由當?ABCD的面積最大時,AB⊥BC,可判定?ABCD是矩形,由矩形的性質(zhì),可得②④正確,③錯誤,又由勾股定理求得AC=1.【詳解】∵當?ABCD的面積最大時,AB⊥BC,∴?ABCD是矩形,

∴∠A=∠C=90°,AC=BD,故③錯誤,④正確;∴∠A+∠C=180°;故②正確;∴AC=AB故答案為:①②④.【點睛】此題考查了平行四邊形的性質(zhì)、矩形的判定與性質(zhì)以及勾股定理.注意證得?ABCD是矩形是解此題的關(guān)鍵.16、【解析】

解:設(shè)E(x,x),∴B(2,x+2),∵反比例函數(shù)(k≠0,x>0)的圖象過點B.E.∴x2=2(x+2),,(舍去),,故答案為三、解答題(共8題,共72分)17、路燈高CD為5.1米.【解析】

根據(jù)AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對應(yīng)邊的比相等列出比例式求解即可.【詳解】設(shè)CD長為x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即,解得:x=5.1.經(jīng)檢驗,x=5.1是原方程的解,∴路燈高CD為5.1米.【點睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是根據(jù)已知條件得到平行線,從而證得相似三角形.18、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.19、-5【解析】

根據(jù)分式的運算法則以及實數(shù)的運算法則即可求出答案.【詳解】當x=sin30°+2﹣1+時,∴x=++2=3,原式=÷==﹣5.【點睛】本題考查分式的運算法則,解題的關(guān)鍵是熟練運用分式的運算法則,本題屬于基礎(chǔ)題型.20、(1)作圖見解析;(2)作圖見解析;(3)P(,0).【解析】

(1)分別將點A、B、C向上平移1個單位,再向右平移5個單位,然后順次連接;(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C以點O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°后的對應(yīng)點,然后順次連接即可;(3)利用最短路徑問題解決,首先作A1點關(guān)于x軸的對稱點A3,再連接A2A3與x軸的交點即為所求.【詳解】解:(1)如圖所示,△A1B1C1為所求做的三角形;(2)如圖所示,△A2B2O為所求做的三角形;(3)∵A2坐標為(3,1),A3坐標為(4,﹣4),∴A2A3所在直線的解析式為:y=﹣5x+16,令y=0,則x=,∴P點的坐標(,0).考點:平移變換;旋轉(zhuǎn)變換;軸對稱-最短路線問題.21、(1).(2)公平.【解析】

試題分析:(1)首先根據(jù)題意結(jié)合概率公式可得答案;(2)首先根據(jù)(1)求得摸出兩張牌面圖形都是軸對稱圖形的有16種情況,若摸出兩張牌面圖形都是中心對稱圖形的有12種情況,繼而求得小明贏與小亮贏的概率,比較概率的大小,即可知這個游戲是否公平.試題解析:(1)共有4張牌,正面是中心對稱圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論