河南省安陽市安陽一中學2023-2024學年中考數(shù)學押題卷含解析_第1頁
河南省安陽市安陽一中學2023-2024學年中考數(shù)學押題卷含解析_第2頁
河南省安陽市安陽一中學2023-2024學年中考數(shù)學押題卷含解析_第3頁
河南省安陽市安陽一中學2023-2024學年中考數(shù)學押題卷含解析_第4頁
河南省安陽市安陽一中學2023-2024學年中考數(shù)學押題卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南省安陽市安陽一中學2023-2024學年中考數(shù)學押題卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點A表示的數(shù)是A. B. C. D.32.《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學的重要著作,其中有一道題,原文是:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺.木長幾何?”意思是:用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺,問木頭長多少尺?可設木頭長為x尺,繩子長為y尺,則所列方程組正確的是()A. B. C. D.3.如圖,在菱形ABCD中,E是AC的中點,EF∥CB,交AB于點F,如果EF=3,那么菱形ABCD的周長為()A.24 B.18 C.12 D.94.小昱和阿帆均從同一本書的第1頁開始,逐頁依順序在每一頁上寫一個數(shù).小昱在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加2;阿帆在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加1.若小昱在某頁寫的數(shù)為101,則阿帆在該頁寫的數(shù)為何?()A.350 B.351 C.356 D.3585.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數(shù)圖象是()A. B. C. D.6.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.7.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=8.為了支援地震災區(qū)同學,某校開展捐書活動,九(1)班40名同學積極參與.現(xiàn)將捐書數(shù)量繪制成頻數(shù)分布直方圖如圖所示,則捐書數(shù)量在5.5~6.5組別的頻率是()A.0.1 B.0.2C.0.3 D.0.49.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m10.如圖中任意畫一個點,落在黑色區(qū)域的概率是()A. B. C.π D.5011.化簡的結果是()A. B. C. D.12.如圖,在中,點D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個A.1 B.2 C.3 D.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,BC=7,,tanC=1,點P為AB邊上一動點(點P不與點B重合),以點P為圓心,PB為半徑畫圓,如果點C在圓外,那么PB的取值范圍______.14.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設運動時間為ts,當t=__________時,△CPQ與△CBA相似.15.計算的結果等于__________.16.如圖1,AB是半圓O的直徑,正方形OPNM的對角線ON與AB垂直且相等,Q是OP的中點.一只機器甲蟲從點A出發(fā)勻速爬行,它先沿直徑爬到點B,再沿半圓爬回到點A,一臺微型記錄儀記錄了甲蟲的爬行過程.設甲蟲爬行的時間為t,甲蟲與微型記錄儀之間的距離為y,表示y與t的函數(shù)關系的圖象如圖2所示,那么微型記錄儀可能位于圖1中的()A.點MB.點NC.點PD.點Q17.在如圖所示(A,B,C三個區(qū)域)的圖形中隨機地撒一把豆子,豆子落在區(qū)域的可能性最大(填A或B或C).18.菱形ABCD中,,其周長為32,則菱形面積為____________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(1)計算:(2)化簡:20.(6分)已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)設點M在拋物線的對稱軸上,當△MAC是以AC為直角邊的直角三角形時,求點M的坐標.21.(6分)4件同型號的產(chǎn)品中,有1件不合格品和3件合格品.從這4件產(chǎn)品中隨機抽取1件進行檢測,求抽到的是不合格品的概率;從這4件產(chǎn)品中隨機抽取2件進行檢測,求抽到的都是合格品的概率;在這4件產(chǎn)品中加入x件合格品后,進行如下試驗:隨機抽取1件進行檢測,然后放回,多次重復這個試驗,通過大量重復試驗后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?22.(8分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標;(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.23.(8分)為響應學校全面推進書香校園建設的號召,班長李青隨機調查了若干同學一周課外閱讀的時間(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(:,:,:,:),根據(jù)圖中信息,解答下列問題:(1)這項工作中被調查的總人數(shù)是多少?(2)補全條形統(tǒng)計圖,并求出表示組的扇形統(tǒng)計圖的圓心角的度數(shù);(3)如果李青想從組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或畫樹狀圖的方法求出選中甲的概率.24.(10分)如圖,河的兩岸MN與PQ相互平行,點A,B是PQ上的兩點,C是MN上的點,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,某人在點A處測得∠CAQ=30°,再沿AQ方向前進20米到達點B,測得∠CBQ=60°,求這條河的寬是多少米?(結果精確到0.1米,參考數(shù)據(jù)≈1.414,≈1.732)25.(10分)為了支持大學生創(chuàng)業(yè),某市政府出臺了一項優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網(wǎng)店,招收5名員工,銷售一種火爆的電子產(chǎn)品,并約定用該網(wǎng)店經(jīng)營的利潤,逐月償還這筆無息貸款.已知該產(chǎn)品的成本為每件4元,員工每人每月的工資為4千元,該網(wǎng)店還需每月支付其它費用1萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價x(元)萬件之間的函數(shù)關系如圖所示.求該網(wǎng)店每月利潤w(萬元)與銷售單價x(元)之間的函數(shù)表達式;小王自網(wǎng)店開業(yè)起,最快在第幾個月可還清10萬元的無息貸款?26.(12分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數(shù);(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標,若不存在,說明理由.27.(12分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

如果點A,B表示的數(shù)的絕對值相等,那么AB的中點即為坐標原點.【詳解】解:如圖,AB的中點即數(shù)軸的原點O.

根據(jù)數(shù)軸可以得到點A表示的數(shù)是.

故選:B.【點睛】此題考查了數(shù)軸有關內(nèi)容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結合的優(yōu)點確定數(shù)軸的原點是解決本題的關鍵.2、A【解析】

根據(jù)“用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺”可以列出相應的方程組,本題得以解決.【詳解】由題意可得,,故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.3、A【解析】【分析】易得BC長為EF長的2倍,那么菱形ABCD的周長=4BC問題得解.【詳解】∵E是AC中點,∵EF∥BC,交AB于點F,∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長是4×6=24,故選A.【點睛】本題考查了三角形中位線的性質及菱形的周長公式,熟練掌握相關知識是解題的關鍵.4、B【解析】

根據(jù)題意確定出小昱和阿帆所寫的數(shù)字,設小昱所寫的第n個數(shù)為101,根據(jù)規(guī)律確定出n的值,即可確定出阿帆在該頁寫的數(shù).【詳解】解:小昱所寫的數(shù)為1,3,5,1,…,101,…;阿帆所寫的數(shù)為1,8,15,22,…,設小昱所寫的第n個數(shù)為101,根據(jù)題意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,則阿帆所寫的第51個數(shù)為1+(51-1)×1=1+50×1=1+350=2.故選B.【點睛】此題考查了有理數(shù)的混合運算,弄清題中的規(guī)律是解本題的關鍵.5、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數(shù)圖象.6、C【解析】

根據(jù)中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.7、B【解析】A.y=-4x+5是一次函數(shù),故此選項錯誤;B.

y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項正確;C.

y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項錯誤;D.

y=是組合函數(shù),故此選項錯誤.故選B.8、B【解析】∵在5.5~6.5組別的頻數(shù)是8,總數(shù)是40,∴=0.1.故選B.9、D【解析】

解:設小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.10、B【解析】

抓住黑白面積相等,根據(jù)概率公式可求出概率.【詳解】因為,黑白區(qū)域面積相等,所以,點落在黑色區(qū)域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關鍵點:分清黑白區(qū)域面積關系.11、D【解析】

將除法變?yōu)槌朔?,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.12、D【解析】

先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據(jù)兩直線平行內(nèi)錯角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進而得到正確說法的個數(shù).【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項④正確,則其中正確的個數(shù)有4個.故選D.【點睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質,角平分線的定義,以及等腰三角形的判定與性質,熟練掌握平行四邊形、矩形及菱形的判定與性質是解本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:根據(jù)題意作出合適的輔助線,然后根據(jù)題意即可求得PB的取值范圍.詳解:作AD⊥BC于點D,作PE⊥BC于點E.∵在△ABC中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由題意可得,當PB=PC時,點C恰好在以點P為圓心,PB為半徑圓上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案為0<PB<.點睛:本題考查了點與圓的位置關系、解直角三角形,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.14、4.8或【解析】

根據(jù)題意可分兩種情況,①當CP和CB是對應邊時,△CPQ∽△CBA與②CP和CA是對應邊時,△CPQ∽△CAB,根據(jù)相似三角形的性質分別求出時間t即可.【詳解】①CP和CB是對應邊時,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對應邊時,△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當t=4.8或時,△CPQ與△CBA相似.【點睛】此題主要考查相似三角形的性質,解題的關鍵是分情況討論.15、【解析】

根據(jù)完全平方公式進行展開,然后再進行同類項合并即可.【詳解】解:.故填.【點睛】主要考查的是完全平方公式及二次根式的混合運算,注意最終結果要化成最簡二次根式的形式.16、D【解析】D.試題分析:應用排他法分析求解:若微型記錄儀位于圖1中的點M,AM最小,與圖2不符,可排除A.若微型記錄儀位于圖1中的點N,由于AN=BM,即甲蟲從A到B時是對稱的,與圖2不符,可排除B.若微型記錄儀位于圖1中的點P,由于甲蟲從A到OP與圓弧的交點時甲蟲與微型記錄儀之間的距離y逐漸減??;甲蟲從OP與圓弧的交點到A時甲蟲與微型記錄儀之間的距離y逐漸增大,即y與t的函數(shù)關系的圖象只有兩個趨勢,與圖2不符,可排除C.故選D.考點:1.動點問題的函數(shù)圖象分析;2.排他法的應用.17、A【解析】試題分析:由題意得:SA>SB>SC,故落在A區(qū)域的可能性大考點:幾何概率18、【解析】分析:根據(jù)菱形的性質易得AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,再判定△ABD為等邊三角形,根據(jù)等邊三角形的性質可得AB=BD=8,從而得OB=4,在Rt△AOB中,根據(jù)勾股定理可得OA=4,繼而求得AC=2AO=,再由菱形的面積公式即可求得菱形ABCD的面積.詳解:∵菱形ABCD中,其周長為32,∴AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,∵,∴△ABD為等邊三角形,∴AB=BD=8,∴OB=4,在Rt△AOB中,OB=4,AB=8,根據(jù)勾股定理可得OA=4,∴AC=2AO=,∴菱形ABCD的面積為:=.點睛:本題考查了菱形性質:1.菱形的四個邊都相等;2.菱形對角線相互垂直平分,并且每一組對角線平分一組對角;3.菱形面積公式=對角線乘積的一半.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)-1;【解析】

(1)根據(jù)負整數(shù)指數(shù)冪、特殊角的三角函數(shù)、零指數(shù)冪可以解答本題;(2)根據(jù)分式的除法和減法可以解答本題.【詳解】(1)==2-.(2)=====-1【點睛】本題考查分式的混合運算、負整數(shù)指數(shù)冪、特殊角的三角函數(shù)、零指數(shù)冪,解答本題的關鍵是明確它們各自的計算方法.20、(1)y=﹣x2+2x+1;(2)當△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【解析】

(1)由點A、C的坐標,利用待定系數(shù)法即可求出拋物線的解析式;(2)設點M的坐標為(1,m),則CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°兩種情況,利用勾股定理可得出關于m的方程,解之可得出m的值,進而即可得出點M的坐標.【詳解】(1)將A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,得:,解得:,∴拋物線的解析式為y=﹣x2+2x+1.(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,設點M的坐標為(1,m),則CM=,AC==,AM=.分兩種情況考慮:①當∠ACM=90°時,有AM2=AC2+CM2,即4+m2=10+1+(m﹣1)2,解得:m=,∴點M的坐標為(1,);②當∠CAM=90°時,有CM2=AM2+AC2,即1+(m﹣1)2=4+m2+10,解得:m=﹣,∴點M的坐標為(1,﹣).綜上所述:當△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【點睛】本題考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象的點的坐標特征以及勾股定理等知識點.21、(1);(2);(3)x=1.【解析】

(1)用不合格品的數(shù)量除以總量即可求得抽到不合格品的概率;(2)利用獨立事件同時發(fā)生的概率等于兩個獨立事件單獨發(fā)生的概率的積即可計算;(3)根據(jù)頻率估計出概率,利用概率公式列式計算即可求得x的值.【詳解】解:(1)∵4件同型號的產(chǎn)品中,有1件不合格品,∴P(不合格品)=;(2)共有12種情況,抽到的都是合格品的情況有6種,P(抽到的都是合格品)==;(3)∵大量重復試驗后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=1.【點睛】本題考查利用頻率估計概率;概率公式;列表法與樹狀圖法.22、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據(jù)tan∠AOC的值,設AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出A坐標,將A坐標代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標;(2)由A與B交點橫坐標,根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標.【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時,△PDC∽△ODC;當PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時P坐標為(0,),綜上,滿足題意P的坐標為(0,)或(0,0).【點睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點問題,坐標與圖形性質,勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質,利用了數(shù)形結合的思想,熟練運用數(shù)形結合思想是解題的關鍵.23、(1)50人;(2)補全圖形見解析,表示A組的扇形統(tǒng)計圖的圓心角的度數(shù)為108°;(3).【解析】分析:(1)、根據(jù)B的人數(shù)和百分比得出樣本容量;(2)、根據(jù)總人數(shù)求出C組的人數(shù),根據(jù)A組的人數(shù)占總人數(shù)的百分比得出扇形的圓心角度數(shù);(3)、根據(jù)題意列出樹狀圖,從而得出概率.詳解:(1)被調查的總人數(shù)為19÷38%=50人;(2)C組的人數(shù)為50﹣(15+19+4)=12(人),補全圖形如下:表示A組的扇形統(tǒng)計圖的圓心角的度數(shù)為360°×=108°;(3)畫樹狀圖如下,共有12個可能的結果,恰好選中甲的結果有6個,∴P(恰好選中甲)=.點睛:本題主要考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖以及概率的計算法則,屬于基礎題型.理解頻數(shù)、頻率與樣本容量之間的關系是解題的關鍵.24、17.3米.【解析】分析:過點C作于D,根據(jù),得到,在中,解三角形即可得到河的寬度.詳解:過點C作于D,∵∴∴米,在中,∵∴∴∴米,∴米.答:這條河的寬是米.點睛:考查解直角三角形的應用,作出輔助線,構造直角三角形是解題的關鍵.25、(1)當4≤x≤6時,w1=﹣x2+12x﹣35,當6≤x≤8時,w2=﹣x2+7x﹣23;(2)最快在第7個月可還清10萬元的無息貸款.【解析】分析:(1)y(萬件)與銷售單價x是分段函數(shù),根據(jù)待定系數(shù)法分別求直線AB和BC的解析式,又分兩種情況,根據(jù)利潤=(售價﹣成本)×銷售量﹣費用,得結論;(2)分別計算兩個利潤的最大值,比較可得出利潤的最大值,最后計算時間即可求解.詳解:(1)設直線AB的解析式為:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直線AB的解析式為:y=﹣x+8,同理代入B(6,2),C(8,1)可得直線BC的解析式為:y=﹣x+5,∵工資及其他費作為:0.4×5+1=3萬元,∴當4≤x≤6時,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,當6≤x≤8時,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2)當4≤x≤6時,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴當x=6時,w1取最大值是1,當6≤x≤8時,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,當x=7時,w2取最大值是1.5,∴==6,即最快在第7個月可還清10萬元的無息貸款.點睛:本題主要考查學生利用待定系數(shù)法求解一次函數(shù)關系式,一次函數(shù)與一次不等式的應用,利用數(shù)形結合的思想,是一道綜合性較強的代數(shù)應用題,能力要求比較高.26、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點坐標為(1,2)或(4,﹣25).【解析】

(1)設交點式y(tǒng)=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計算出AC=,BC=,接著利用面積法計算出AE=,然后根據(jù)三角函數(shù)的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設H(m,n),證明Rt△BCH∽Rt△ACO,利用相似計算出BH=,CH=,再根據(jù)兩點間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數(shù)聯(lián)立成方程組,解方程組即可.【詳解】(1)設拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當x=0時,y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論