




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆江蘇省揚(yáng)州市教院重點(diǎn)名校中考考前最后一卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.將(x+3)2﹣(x﹣1)2分解因式的結(jié)果是()A.4(2x+2) B.8x+8 C.8(x+1) D.4(x+1)2.如圖,有一塊含有30°角的直角三角板的兩個(gè)頂點(diǎn)放在直尺的對邊上.如果∠2=44°,那么∠1的度數(shù)是()A.14°B.15°C.16°D.17°3.實(shí)數(shù)a在數(shù)軸上對應(yīng)點(diǎn)的位置如圖所示,把a(bǔ),﹣a,a2按照從小到大的順序排列,正確的是()A.﹣a<a<a2 B.a(chǎn)<﹣a<a2 C.﹣a<a2<a D.a(chǎn)<a2<﹣a4.如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口,4小時(shí)后貨船在小島的正東方向,則貨船的航行速度是()A.7海里/時(shí) B.7海里/時(shí) C.7海里/時(shí) D.28海里/時(shí)5.如圖,反比例函數(shù)y=-4x的圖象與直線y=-1A.8B.6C.4D.26.已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個(gè)相等的實(shí)數(shù)根,下列判斷正確的是()A.1一定不是關(guān)于x的方程x2+bx+a=0的根B.0一定不是關(guān)于x的方程x2+bx+a=0的根C.1和﹣1都是關(guān)于x的方程x2+bx+a=0的根D.1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根7.在剛過去的2017年,我國整體經(jīng)濟(jì)實(shí)力躍上了一個(gè)新臺階,城鎮(zhèn)新增就業(yè)1351萬人,數(shù)據(jù)“1351萬”用科學(xué)記數(shù)法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1088.下列各式中,互為相反數(shù)的是()A.和 B.和 C.和 D.和9.cos30°=()A. B. C. D.10.已知a=(+1)2,估計(jì)a的值在()A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間11.一個(gè)多邊形的內(nèi)角和比它的外角和的倍少180°,那么這個(gè)多邊形的邊數(shù)是()A.7 B.8 C.9 D.1012.如圖,在平面直角坐標(biāo)系中,以A(-1,0),B(2,0),C(0,1)為頂點(diǎn)構(gòu)造平行四邊形,下列各點(diǎn)中不能作為平行四邊形頂點(diǎn)坐標(biāo)的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,若正五邊形和正六邊形有一邊重合,則∠BAC=_____.14.分解因式:4ax2-ay2=________________.15.為了了解貫徹執(zhí)行國家提倡的“陽光體育運(yùn)動(dòng)”的實(shí)施情況,將某班50名同學(xué)一周的體育鍛煉情況繪制成了如圖所示的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的數(shù)據(jù),該班50名同學(xué)一周參加體育鍛煉時(shí)間的中位數(shù)與眾數(shù)之和為_____.16.拋物線y=x2﹣2x+m與x軸只有一個(gè)交點(diǎn),則m的值為_____.17.如圖,在同一平面內(nèi),將邊長相等的正三角形和正六邊形的一條邊重合并疊在一起,則∠1的度數(shù)為_____.18.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某水果基地計(jì)劃裝運(yùn)甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運(yùn)甲、乙、丙三種水果的重量及利潤.甲乙丙每輛汽車能裝的數(shù)量(噸)423每噸水果可獲利潤(千元)574(1)用8輛汽車裝運(yùn)乙、丙兩種水果共22噸到A地銷售,問裝運(yùn)乙、丙兩種水果的汽車各多少輛?(2)水果基地計(jì)劃用20輛汽車裝運(yùn)甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設(shè)裝運(yùn)甲水果的汽車為m輛,則裝運(yùn)乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)(3)在(2)問的基礎(chǔ)上,如何安排裝運(yùn)可使水果基地獲得最大利潤?最大利潤是多少?20.(6分)如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個(gè)單位長度的速度沿著射線DA的方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒),將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD),得到對應(yīng)線段CF.(1)求證:BE=DF;(2)當(dāng)t=秒時(shí),DF的長度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點(diǎn)P、Q,當(dāng)t為何值時(shí),△EPQ是直角三角形?21.(6分)如圖,平面直角坐標(biāo)系中,將含30°的三角尺的直角頂點(diǎn)C落在第二象限.其斜邊兩端點(diǎn)A、B分別落在x軸、y軸上且AB=12cm(1)若OB=6cm.①求點(diǎn)C的坐標(biāo);②若點(diǎn)A向右滑動(dòng)的距離與點(diǎn)B向上滑動(dòng)的距離相等,求滑動(dòng)的距離;(2)點(diǎn)C與點(diǎn)O的距離的最大值是多少cm.22.(8分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點(diǎn)M為邊BC上一動(dòng)點(diǎn),聯(lián)結(jié)AM并延長交射線DC于點(diǎn)F,作∠FAE=45°交射線BC于點(diǎn)E、交邊DCN于點(diǎn)N,聯(lián)結(jié)EF.(1)當(dāng)CM:CB=1:4時(shí),求CF的長.(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.(3)當(dāng)△ABM∽△EFN時(shí),求CM的長.23.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點(diǎn)D,E,DG⊥AC于點(diǎn)G,交AB的延長線于點(diǎn)F.(1)求證:直線FG是⊙O的切線;(2)若AC=10,cosA=2524.(10分)已知△ABC中,D為AB邊上任意一點(diǎn),DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如圖1所示,當(dāng)α=60°時(shí),求證:△DCE是等邊三角形;(2)如圖2所示,當(dāng)α=45°時(shí),求證:=;(3)如圖3所示,當(dāng)α為任意銳角時(shí),請直接寫出線段CE與DE的數(shù)量關(guān)系:=_____.25.(10分)如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點(diǎn)D,點(diǎn)E在⊙O上,且DE=DA,AE與BC交于點(diǎn)F.(1)求證:FD=CD;(2)若AE=8,tan∠E=3426.(12分)綿陽某公司銷售統(tǒng)計(jì)了每個(gè)銷售員在某月的銷售額,繪制了如下折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:
設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當(dāng)x<16時(shí),為“不稱職”,當(dāng)時(shí)為“基本稱職”,當(dāng)時(shí)為“稱職”,當(dāng)時(shí)為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:補(bǔ)全折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);為了調(diào)動(dòng)銷售員的積極性,銷售部決定制定一個(gè)月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡月銷售額達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的銷售員將獲得獎(jiǎng)勵(lì)。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎(jiǎng),月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.27.(12分)如圖,點(diǎn)P是菱形ABCD的對角線BD上一點(diǎn),連接CP并延長,交AD于E,交BA的延長線點(diǎn)F.問:圖中△APD與哪個(gè)三角形全等?并說明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
直接利用平方差公式分解因式即可.【詳解】(x+3)2?(x?1)2=[(x+3)+(x?1)][(x+3)?(x?1)]=4(2x+2)=8(x+1).故選C.【點(diǎn)睛】此題主要考查了公式法分解因式,正確應(yīng)用平方差公式是解題關(guān)鍵.2、C【解析】
依據(jù)∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根據(jù)BE∥CD,即可得出∠1=∠EBC=16°.【詳解】如圖,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故選:C.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.3、D【解析】
根據(jù)實(shí)數(shù)a在數(shù)軸上的位置,判斷a,﹣a,a2在數(shù)軸上的相對位置,根據(jù)數(shù)軸上右邊的數(shù)大于左邊的數(shù)進(jìn)行判斷.【詳解】由數(shù)軸上的位置可得,a<0,-a>0,0<a2<a,所以,a<a2<﹣a.故選D【點(diǎn)睛】本題考核知識點(diǎn):考查了有理數(shù)的大小比較,解答本題的關(guān)鍵是根據(jù)數(shù)軸判斷出a,﹣a,a2的位置.4、A【解析】試題解析:設(shè)貨船的航行速度為海里/時(shí),小時(shí)后貨船在點(diǎn)處,作于點(diǎn).由題意海里,海里,在中,所以在中,所以所以解得:故選A.5、A【解析】試題解析:由于點(diǎn)A、B在反比例函數(shù)圖象上關(guān)于原點(diǎn)對稱,則△ABC的面積=2|k|=2×4=1.故選A.考點(diǎn):反比例函數(shù)系數(shù)k的幾何意義.6、D【解析】
根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根可得出b=a+1或b=-(a+1),當(dāng)b=a+1時(shí),-1是方程x2+bx+a=0的根;當(dāng)b=-(a+1)時(shí),1是方程x2+bx+a=0的根.再結(jié)合a+1≠-(a+1),可得出1和-1不都是關(guān)于x的方程x2+bx+a=0的根.【詳解】∵關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個(gè)相等的實(shí)數(shù)根,∴,∴b=a+1或b=-(a+1).當(dāng)b=a+1時(shí),有a-b+1=0,此時(shí)-1是方程x2+bx+a=0的根;當(dāng)b=-(a+1)時(shí),有a+b+1=0,此時(shí)1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是關(guān)于x的方程x2+bx+a=0的根.故選D.【點(diǎn)睛】本題考查了根的判別式以及一元二次方程的定義,牢記“當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根”是解題的關(guān)鍵.7、B【解析】
根據(jù)科學(xué)記數(shù)法進(jìn)行解答.【詳解】1315萬即13510000,用科學(xué)記數(shù)法表示為1.351×107.故選擇B.【點(diǎn)睛】本題主要考查科學(xué)記數(shù)法,科學(xué)記數(shù)法表示數(shù)的標(biāo)準(zhǔn)形式是a×10n(1≤│a│<10且n為整數(shù)).8、A【解析】
根據(jù)乘方的法則進(jìn)行計(jì)算,然后根據(jù)只有符號不同的兩個(gè)數(shù)互為相反數(shù),可得答案.【詳解】解:A.=9,=-9,故和互為相反數(shù),故正確;B.=9,=9,故和不是互為相反數(shù),故錯(cuò)誤;C.=-8,=-8,故和不是互為相反數(shù),故錯(cuò)誤;D.=8,=8故和不是互為相反數(shù),故錯(cuò)誤.故選A.【點(diǎn)睛】本題考查了有理數(shù)的乘方和相反數(shù)的定義,關(guān)鍵是掌握有理數(shù)乘方的運(yùn)算法則.9、C【解析】
直接根據(jù)特殊角的銳角三角函數(shù)值求解即可.【詳解】故選C.【點(diǎn)睛】考點(diǎn):特殊角的銳角三角函數(shù)點(diǎn)評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握特殊角的銳角三角函數(shù)值,即可完成.10、D【解析】
首先計(jì)算平方,然后再確定的范圍,進(jìn)而可得4+的范圍.【詳解】解:a=×(7+1+2)=4+,∵2<<3,∴6<4+<7,∴a的值在6和7之間,故選D.【點(diǎn)睛】此題主要考查了估算無理數(shù)的大小,用有理數(shù)逼近無理數(shù),求無理數(shù)的近似值.11、A【解析】
設(shè)這個(gè)正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設(shè)這個(gè)多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點(diǎn)睛】本題主要考查多邊形內(nèi)角與外角的知識點(diǎn),此題要結(jié)合多邊形的內(nèi)角和與外角和,根據(jù)題目中的等量關(guān)系,構(gòu)建方程求解即可.12、B【解析】
作出圖形,結(jié)合圖形進(jìn)行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(xiàn)(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、132°【解析】解:∵正五邊形的內(nèi)角=180°-360°÷5=108°,正六邊形的內(nèi)角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案為132°.14、a(2x+y)(2x-y)【解析】
首先提取公因式a,再利用平方差進(jìn)行分解即可.【詳解】原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案為a(2x+y)(2x-y).【點(diǎn)睛】本題考查了用提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.15、17【解析】∵8是出現(xiàn)次數(shù)最多的,∴眾數(shù)是8,∵這組數(shù)據(jù)從小到大的順序排列,處于中間位置的兩個(gè)數(shù)都是9,∴中位數(shù)是9,所以中位數(shù)與眾數(shù)之和為8+9=17.故答案為17小時(shí).16、1【解析】
由拋物線y=x2-2x+m與x軸只有一個(gè)交點(diǎn)可知,對應(yīng)的一元二次方程x2-2x+m=2,根的判別式△=b2-4ac=2,由此即可得到關(guān)于m的方程,解方程即可求得m的值.【詳解】解:∵拋物線y=x2﹣2x+m與x軸只有一個(gè)交點(diǎn),∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案為1.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)問題,注:①拋物線與x軸有兩個(gè)交點(diǎn),則△>2;②拋物線與x軸無交點(diǎn),則△<2;③拋物線與x軸有一個(gè)交點(diǎn),則△=2.17、60°【解析】
先根據(jù)多邊形的內(nèi)角和公式求出正六邊形每個(gè)內(nèi)角的度數(shù),然后用正六邊形內(nèi)角的度數(shù)減去正三角形內(nèi)角的度數(shù)即可.【詳解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案為:60°.【點(diǎn)睛】題考查了多邊形的內(nèi)角和公式,熟記多邊形的內(nèi)角和公式為(n-2)×180°是解答本題的關(guān)鍵.18、-3<x<1【解析】試題分析:根據(jù)拋物線的對稱軸為x=﹣1,一個(gè)交點(diǎn)為(1,0),可推出另一交點(diǎn)為(﹣3,0),結(jié)合圖象求出y>0時(shí),x的范圍.解:根據(jù)拋物線的圖象可知:拋物線的對稱軸為x=﹣1,已知一個(gè)交點(diǎn)為(1,0),根據(jù)對稱性,則另一交點(diǎn)為(﹣3,0),所以y>0時(shí),x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點(diǎn):二次函數(shù)的圖象.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)乙種水果的車有2輛、丙種水果的汽車有6輛;(2)乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛;(3)見解析.【解析】
(1)根據(jù)“8輛汽車裝運(yùn)乙、丙兩種水果共22噸到A地銷售”列出方程組,即可解答;(2)設(shè)裝運(yùn)乙、丙水果的車分別為a輛,b輛,列出方程組即可解答;(3)設(shè)總利潤為w千元,表示出w=10m+1.列出不等式組確定m的取值范圍13≤m≤15.5,結(jié)合一次函數(shù)的性質(zhì),即可解答.【詳解】解:(1)設(shè)裝運(yùn)乙、丙水果的車分別為x輛,y輛,得:解得:答:裝運(yùn)乙種水果的車有2輛、丙種水果的汽車有6輛.(2)設(shè)裝運(yùn)乙、丙水果的車分別為a輛,b輛,得:,解得:答:裝運(yùn)乙種水果的汽車是(m﹣12)輛,丙種水果的汽車是(32﹣2m)輛.(3)設(shè)總利潤為w千元,w=5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+1.∵∴13≤m≤15.5,∵m為正整數(shù),∴m=13,14,15,在w=10m+1中,w隨m的增大而增大,∴當(dāng)m=15時(shí),W最大=366(千元),答:當(dāng)運(yùn)甲水果的車15輛,運(yùn)乙水果的車3輛,運(yùn)丙水果的車2輛,利潤最大,最大利潤為366千元.【點(diǎn)睛】此題主要考查了一次函數(shù)的應(yīng)用,解決本題的關(guān)鍵是運(yùn)用函數(shù)性質(zhì)求最值,需確定自變量的取值范圍.20、(1)見解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒時(shí),△EPQ是直角三角形【解析】
(1)由∠ECF=∠BCD得∠DCF=∠BCE,結(jié)合DC=BC、CE=CF證△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延長線于E′.當(dāng)點(diǎn)E運(yùn)動(dòng)至點(diǎn)E′時(shí),由DF=BE′知此時(shí)DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°時(shí),由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據(jù)AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°時(shí),由菱形ABCD的對角線AC⊥BD知EC與AC重合,可得DE=6.【詳解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如圖1,作BE′⊥DA交DA的延長線于E′.當(dāng)點(diǎn)E運(yùn)動(dòng)至點(diǎn)E′時(shí),DF=BE′,此時(shí)DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴設(shè)AE′=x,則BE′=2x,∴AB=x=6,x=6,則AE′=6∴DE′=6+6,DF=BE′=12,時(shí)間t=6+6,故答案為:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①當(dāng)∠EQP=90°時(shí),如圖2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②當(dāng)∠EPQ=90°時(shí),如圖2②,∵菱形ABCD的對角線AC⊥BD,∴EC與AC重合,∴DE=6,∴t=6秒,綜上所述,t=6秒或6秒時(shí),△EPQ是直角三角形.【點(diǎn)睛】此題是菱形與動(dòng)點(diǎn)問題,考查菱形的性質(zhì),三角形全等的判定定理,等腰三角形的性質(zhì),最短路徑問題,注意(3)中的直角沒有明確時(shí)應(yīng)分情況討論解答.21、(1)①點(diǎn)C的坐標(biāo)為(-3,9);②滑動(dòng)的距離為6(﹣1)cm;(2)OC最大值1cm.【解析】試題分析:(1)①過點(diǎn)C作y軸的垂線,垂足為D,根據(jù)30°的直角三角形的性質(zhì)解答即可;②設(shè)點(diǎn)A向右滑動(dòng)的距離為x,根據(jù)題意得點(diǎn)B向上滑動(dòng)的距離也為x,根據(jù)銳角三角函數(shù)和勾股定理解答即可;(2)設(shè)點(diǎn)C的坐標(biāo)為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,證得△ACE∽△BCD,利用相似三角形的性質(zhì)解答即可.試題解析:解:(1)①過點(diǎn)C作y軸的垂線,垂足為D,如圖1:在Rt△AOB中,AB=1,OB=6,則BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以點(diǎn)C的坐標(biāo)為(﹣3,9);②設(shè)點(diǎn)A向右滑動(dòng)的距離為x,根據(jù)題意得點(diǎn)B向上滑動(dòng)的距離也為x,如圖2:AO=1×cos∠BAO=1×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=1在△A'OB'中,由勾股定理得,(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),∴滑動(dòng)的距離為6(﹣1);(2)設(shè)點(diǎn)C的坐標(biāo)為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,如圖3:則OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴當(dāng)|x|取最大值時(shí),即C到y(tǒng)軸距離最大時(shí),OC2有最大值,即OC取最大值,如圖,即當(dāng)C'B'旋轉(zhuǎn)到與y軸垂直時(shí).此時(shí)OC=1,故答案為1.考點(diǎn):相似三角形綜合題.22、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】
(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長,利用平行線分線段成比例定理即可解決問題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構(gòu)建函數(shù)關(guān)系式即可解決問題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點(diǎn)G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;【詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點(diǎn)G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設(shè)DN=HM=x,則MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.【點(diǎn)睛】本題考查了正方形的判定與性質(zhì),平行線分線段成比例定理,勾股定理,相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì).熟練運(yùn)用平行線分線段成比例定理是解(1)的關(guān)鍵;證明△EAM∽△EBA是解(2)的關(guān)鍵;綜合運(yùn)用全等三角形的判定與性質(zhì)是解(3)的關(guān)鍵.23、(3)證明見試題解析;(3)3.【解析】試題分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直線FG是⊙O的切線.(3)先得出△ODF∽△AGF,再由cosA=25,得出cos∠DOF=2試題解析:(3)如圖3,連接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半徑,∴直線FG是⊙O的切線;(3)如圖3,∵AB=AC=30,AB是⊙O的直徑,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴ODAG=OFAF,∵cosA=25,∴cos∠DOF=25,∴OF=ODcos∠DOF=52考點(diǎn):3.切線的判定;3.相似三角形的判定與性質(zhì);3.綜合題.24、1【解析】試題分析:(1)證明△CFD≌△DAE即可解決問題.(2)如圖2中,作FG⊥AC于G.只要證明△CFD∽△DAE,推出=,再證明CF=AD即可.(3)證明EC=ED即可解決問題.試題解析:(1)證明:如圖1中,∵∠ABC=∠ACB=60°,∴△ABC是等邊三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等邊三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等邊三角形.(2)證明:如圖2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四邊形ADFG是矩形,F(xiàn)C=FG,∴FG=AD,CF=AD,∴=.(3)解:如圖3中,設(shè)AC與DE交于點(diǎn)O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.點(diǎn)睛:本題考查了相似三角形綜合題、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,靈活運(yùn)用所學(xué)知識解決問題,屬于中考壓軸題.25、(1)證明見解析;(2)256【解析】
(1)先利用切線的性質(zhì)得出∠CAD+∠BAD=90°,再利用直徑所對的圓周角是直角得出∠B+∠BAD=90°,從而可證明∠B=∠EAD,進(jìn)而得出∠EAD=∠CAD,進(jìn)而判斷出△ADF≌△ADC,即可得出結(jié)論;(2)過點(diǎn)D作DG⊥AE,垂足為G.依據(jù)等腰三角形的性質(zhì)可得到EG=AG=1,然后在Rt△GEG中,依據(jù)銳角三角函數(shù)的定義可得到DG的長,然后依據(jù)勾股定理可得到AD=ED=2,然后在Rt△ABD中,依據(jù)銳角三角函數(shù)的定義可求得AB的長,從而可求得⊙O的半徑的長.【詳解】(1)∵AC是⊙O的切線,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,∵DA=DE,∴∠EAD=∠E,又∵∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,∴△ADF≌△ADC,∴FD=CD.(2)如下圖所示:過點(diǎn)D作DG⊥AE,垂足為G.∵DE=AE,DG⊥AE,∴EG=AG=12∵tan∠E=34∴GDEG=34,即GD4∴ED=EG∵∠B=∠E,tan∠E=34∴sin∠B=ADAB=GDED=∴⊙O的半徑為256【點(diǎn)睛】本題考查了切線的性質(zhì),圓周角定理,圓的性質(zhì),全等三角形的判定和性質(zhì),利用等式的性質(zhì)和同角的余角相等判斷角相等是解本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游景區(qū)開發(fā)及運(yùn)營服務(wù)合同
- 工程合同管理工作制度
- 擔(dān)保合同第三方擔(dān)保
- 職工勞動(dòng)合同協(xié)議書
- 個(gè)人集資房屋買賣合同
- 商場物業(yè)合同年
- 房屋土地出租合同書
- 出租車庫正式合同
- 淺析合同擔(dān)保之定金
- 福建幼兒師范高等??茖W(xué)?!冬F(xiàn)代企業(yè)管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 核電項(xiàng)目人橋吊車抗震計(jì)算書版
- 耳鼻咽喉頭頸外科學(xué)-鼻科癥狀學(xué)課件
- 《幼小銜接存在的問題及對策研究(論文)6400字》
- 揭陽市基層診所醫(yī)療機(jī)構(gòu)衛(wèi)生院社區(qū)衛(wèi)生服務(wù)中心村衛(wèi)生室地址信息
- 通信工程監(jiān)理方案
- 主題閱讀25:陜北的春
- 晉中項(xiàng)目投決會(huì)報(bào)告
- 2022年中小學(xué)心理健康教育指導(dǎo)綱要
- 公共關(guān)系文書(《公共關(guān)系學(xué)》課件)
- 2023屆高考復(fù)習(xí)之文學(xué)類文本閱讀訓(xùn)練
- 國家基礎(chǔ)教育實(shí)驗(yàn)中心外語教育研究中心
評論
0/150
提交評論