版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
關(guān)于移動機(jī)器人路徑規(guī)劃體系結(jié)構(gòu)基于功能的分層式體系結(jié)構(gòu)功能:感知->建模->規(guī)劃->行動基于(傳感器)行為的反應(yīng)式體系結(jié)構(gòu)如Brooks包容式體系結(jié)構(gòu)機(jī)器人行為控制器構(gòu)造優(yōu)化方法基于模糊邏輯及神經(jīng)網(wǎng)絡(luò)的監(jiān)督學(xué)習(xí)基于傳感器信息的局部運(yùn)動規(guī)劃(前兩種)混合式BrooksR,RobisA.LayeredControlSystemforaMobileRobot.IEEETransonRobotics&Automation.1986,2(1):14-23第2頁,共19頁,2024年2月25日,星期天路徑規(guī)劃以C表示機(jī)器人的位形空間,以F表示無碰撞的自由位形空間。給定機(jī)器人初始位形qinit和目標(biāo)位形qgoal,在F中尋找一條連接這兩點的連續(xù)曲線,滿足某些性能指標(biāo),如路徑最短、行走時間最短、工作代價最小等。路徑規(guī)劃主要包括環(huán)境、路徑搜索和路徑平滑環(huán)節(jié)第3頁,共19頁,2024年2月25日,星期天環(huán)境建模從現(xiàn)實物理空間到算法處理抽象空間的映射表示常用建模表示方法:柵格法類似于矩陣,柵格數(shù)據(jù)表示有無障礙物易創(chuàng)建和維護(hù),但分辯率和數(shù)據(jù)量互相制約幾何法利用幾何特征表示需要對感知信息作額外處理圖將前面兩種方法結(jié)果用拓?fù)浞ㄟB接成一個圖第4頁,共19頁,2024年2月25日,星期天路徑搜索路徑表達(dá):以環(huán)境模型中的結(jié)點序列組成或由直線段序列組成路徑平滑:依據(jù)機(jī)器人運(yùn)動學(xué)或動力學(xué)約束形成機(jī)器人可跟蹤執(zhí)行的運(yùn)動軌跡如果考慮機(jī)器人運(yùn)動學(xué)約束,則路徑軌跡的一階導(dǎo)數(shù)應(yīng)連續(xù)如果考慮動力學(xué)約束,則路徑軌跡的二階導(dǎo)數(shù)應(yīng)連續(xù)第5頁,共19頁,2024年2月25日,星期天路徑規(guī)劃基于地圖的全局路徑規(guī)劃環(huán)境已知的離線全局路徑規(guī)劃環(huán)境未知的在線規(guī)劃基于進(jìn)化算法基于廣義預(yù)測控制基于傳感器的局部路徑規(guī)劃增量式構(gòu)造當(dāng)前可視區(qū)域路徑圖的規(guī)劃方法基于近似單元分解的局部路徑規(guī)劃方法基于微分平坦系統(tǒng)理論的運(yùn)動規(guī)劃方法第6頁,共19頁,2024年2月25日,星期天路徑規(guī)劃方法分類傳統(tǒng)經(jīng)典算法基于圖的方法基于柵格的方法勢場法數(shù)學(xué)編程法智能方法模糊方法神經(jīng)網(wǎng)絡(luò)方法遺傳算法第7頁,共19頁,2024年2月25日,星期天基于圖的方法通過起始點和目標(biāo)點以及障礙物頂點在內(nèi)的一系列點構(gòu)造可視圖,連接這些點,使某點與其周圍的可視點(即中間無障礙物)相連,然后機(jī)器人沿著這些點在圖中搜索路徑。全局圖法可視圖法、Voronoi圖法、Silhouette法、基于啟發(fā)式搜索的Q-M圖法全局搜索,路徑完備,但計算量大,難實現(xiàn)基于隨機(jī)路圖的方法PRM(ProbabilisticRoadmapMethod)易于實現(xiàn),速度效率高,但僅具有概率完備性第8頁,共19頁,2024年2月25日,星期天基于柵格的方法將區(qū)域劃分成柵格,搜索連通柵格表示路徑。優(yōu)點:易于建模、存儲、處理、更新與分析Dijkstra算法:通過枚舉求解兩點間距離最短A*算法:通過代價評估加快搜索梯度法:由起點到目標(biāo)點距離下降最大梯度方向搜索,不能保證全局最短,可能陷入局部最小點距離變換法:逆向的梯度法,保證全局最短,但搜索效率隨柵格和障礙物數(shù)目增加急驟下降四叉樹法:不能最優(yōu)甚至次優(yōu)、損失大量可行自由空間第9頁,共19頁,2024年2月25日,星期天勢場法目標(biāo)產(chǎn)生引力、障礙物產(chǎn)生斥力,合力控制機(jī)器人運(yùn)動適用于靜態(tài)環(huán)境或動態(tài)環(huán)境存在振蕩和局部最小值方法:人工勢場法虛擬力場法電場法結(jié)合模擬退火的人工勢場法第10頁,共19頁,2024年2月25日,星期天數(shù)學(xué)編程法用一組不等式來表示機(jī)器人的避碰約束,機(jī)器人運(yùn)動起點和終點分別用一個函數(shù)的起始條件和終止條件表示,同時設(shè)定一個最優(yōu)評價函數(shù),從而將路徑規(guī)劃問題轉(zhuǎn)化為一個純數(shù)學(xué)的最優(yōu)求解問題。第11頁,共19頁,2024年2月25日,星期天基于模糊邏輯的方法模糊邏輯:構(gòu)造二維隸屬度函數(shù),模糊綜合評價該方法在環(huán)境未知或發(fā)生變化的情況下,能夠快速而準(zhǔn)確地規(guī)劃機(jī)器人路徑,對于要求較少規(guī)劃時間的機(jī)器人是一種良好的導(dǎo)航方法。缺點是當(dāng)障礙物數(shù)目增加時,該方法的計算量會很大,影響規(guī)劃結(jié)果第12頁,共19頁,2024年2月25日,星期天基于神經(jīng)網(wǎng)絡(luò)的方法利用神經(jīng)網(wǎng)絡(luò)進(jìn)行路徑規(guī)劃缺點:運(yùn)算時間長,在運(yùn)動空間數(shù)據(jù)不完備時可能發(fā)生不收斂或路徑不可行問題第13頁,共19頁,2024年2月25日,星期天基于遺傳算法的路徑規(guī)劃遺傳算法是計算數(shù)學(xué)中用于解決最優(yōu)化的搜索算法,是進(jìn)化算法的一種。遺傳算法通常實現(xiàn)為一種計算機(jī)模擬。對于一個最優(yōu)化問題,一定數(shù)量的候選解(稱為個體)的抽象表示(稱為染色體)的種群向更好的解進(jìn)化。傳統(tǒng)上,解用二進(jìn)制表示(即0和1的串),但也可以用其他表示方法。進(jìn)化從完全隨機(jī)個體的種群開始,之后一代一代發(fā)生。在每一代中,整個種群的適應(yīng)度被評價,從當(dāng)前種群中隨機(jī)地選擇多個個體(基于它們的適應(yīng)度),通過自然選擇和突變產(chǎn)生新的生命種群,該種群在算法的下一次迭代中成為當(dāng)前種群。衍生算法:退火遺傳算法、改進(jìn)遺傳算子等第14頁,共19頁,2024年2月25日,星期天其它智能機(jī)器人路徑規(guī)劃方法螞蟻算法:一種全局優(yōu)化算法,模仿螞蟻搜索食物的行為,是一種通用型隨機(jī)優(yōu)化方法第15頁,共19頁,2024年2月25日,星期天基于電路地圖的路徑規(guī)劃方法將環(huán)境建模成電路圖。規(guī)劃路徑與電流相似,即路徑的長度以電路中某條通路中串聯(lián)電阻的多少來反映,路徑的寬度以電路中某個方向上的支路數(shù)目即并聯(lián)電阻多少來反映。根據(jù)歐姆定律和電的基本性質(zhì),在電路中電阻最小的支路上電流最大,而串聯(lián)電阻少且并聯(lián)電阻多的支路即最大電流通路。優(yōu)點:在規(guī)劃最短路徑的同時考慮了路徑寬度第16頁,共19頁,2024年2月25日,星期天運(yùn)動控制基于路徑規(guī)劃的移動機(jī)器人路徑跟蹤控制非完整控制系統(tǒng)的鎮(zhèn)定方法非連續(xù)定常鎮(zhèn)定化時變鎮(zhèn)定化基于傳感器-執(zhí)行器直接映射的運(yùn)動控制模糊邏輯方法\神經(jīng)網(wǎng)絡(luò)法(要求先驗知識)基于動態(tài)規(guī)劃的增強(qiáng)第17頁,共19頁,2024年2月25日,星期天故障
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 口罩批發(fā)代銷合同范例
- 培訓(xùn)學(xué)生合同范例
- 月子中介協(xié)議合同范例
- 單位臨時租車協(xié)議合同范例
- 國內(nèi)購買合同范例
- 深圳定車合同范例
- 租房合同范例備案
- 2025年學(xué)校綠化合同書
- 品牌宣傳及形象策劃服務(wù)協(xié)議
- 外匯擔(dān)保借款合同
- 行政案例分析-第二次形成性考核-國開(SC)-參考資料
- 2024-2025學(xué)年人教版八年級上學(xué)期數(shù)學(xué)期末復(fù)習(xí)試題(含答案)
- 【MOOC】中級財務(wù)會計-北京交通大學(xué) 中國大學(xué)慕課MOOC答案
- “感恩老師”教師節(jié)主題班會教案【三篇】
- 《園林政策與法規(guī)》課件
- 讀書分享《終身成長》課件
- GB/T 44843-2024在用自動扶梯和自動人行道安全評估規(guī)范
- 廣東省廣州市2023-2024學(xué)年六年級上學(xué)期語文期末試卷(含答案)
- 危險化學(xué)品經(jīng)營單位主要負(fù)責(zé)人考試練習(xí)題(含答案)
- 2024年廣西安全員A證考試題庫
- 高等數(shù)學(xué)教程 上冊 第4版 測試題及答案 共4套
評論
0/150
提交評論